Kepler’s law (following on from previous post)

The previous post, https://nige.wordpress.com/2006/09/22/gravity-equation-discredits-lubos-motl, has led to an interesting development.

Dr Thomas R. Love of California State University, Dominguez Hills, writes in an email to me: ‘Consider a planet of mass m, orbiting a star of mass M with an average radius of r. The theorem of equipartion of energy requires that the average kinetic energy is equal to the average potential energy [this is because the energy for escape velocity v = (2GM/r1/2 of an orbiting body is exactly equal in magnitude to its existing kinetic energy, so the gravitational potential energy (which is the energy you need to throw an object up to an infinite height and by energy conservation this is equal to the energy an object gets by falling from an infinite height) of an object in orbit is equal to its orbital kinetic energy, E = (1/2) mv 2 = (1/2) m((2GM/r1/2 )2 = mMG/r ]:

(1/2) mv 2 = mMG/r

cancelling the m

(1/2) v 2 = MG/r

Since the orbit is close to being a circle, we can take the average velocity to be:

v = 2p r/T

where T is the period.  Substitute

(1/2)(2p r/T)2 = MG/r

and simplify to obtain:

r 3 = MGT 2 /(2p 2 )

which is Kepler’s law.’

This is a nice extension of the idea in the previous post in this weblog.  I’ve sent Dr Love an email stating that if you next consider a photon orbiting the mass M, by simply setting v = c, and using Einstein’s equivalence for mass m = E/c 2 , then (1/2) mv 2 = mMG/r immediately gives you the correct black hole event horizon radius that general relativity predicts, namely: r = 2GM/c 2 . 

This implies that the effective kinetic energy of a photon is E = (1/2) mc 2 = (1/2) pc (because the photon has no rest mass, whatever mass is – Higgs field or whatever – momentum p = mc is less objectionable).  This is half the amount in the usual formula relating the energy of a photon to its momentum, which is E = pc.

The factor of two discrepancy here is due to the fact that the photon is a transverse wave of electromagnetic field energy, so it oscillates ar right angles to its propagation direction, and the transverse oscillation carries half of the kinetic energy.  In fact, it has equal energy in its electric and magnetic fields, which oscillate at right angles to one another.  Therefore, the kinetic energy of the electromagnetic vibrations of the photon in the direction of the gravitational field vector (as the photon orbits around the mass) is half its total energy E = pc.

Update (3 October 2006):

The physical dynamics for Dr Love’s (1/2) mv 2 = mMG/r is clearly that gravity is trapping the oribiting mass into a closed orbit.  So if the kinetic energy (1/2) mv 2 of mass m was bigger than its gravitational potential energy with respect to the bigger mass (M) that it is orbiting, mMG/r, then it would spiral outwards instead of being in a closed orbit.

But if the kinetic energy of the mass m was smaller than its gravitational potential energy with respect to M, then it would obviously spiral inward (until the energies balanced).

See comments on this and the previous post for some more information.  One thing I’d like to add is that in the Yang-Mills gravity dynamics where gauge boson exchanges between masses cause gravity in an orbital situation such as Dr Love considers, the centripetal force (gravity) is often said to be cancelled by a fictitious outward force, called the centrifugal force.  The key equation a = v 2 /r leads to F = ma = mv 2 /r  for this force, see http://en.wikipedia.org/wiki/Centripetal_force for a couple of derivations of a = v 2 /r (sadly, both of the Wikipedia derivations are relatively inelegant and ugly, compared to a really nice derivation which they don’t give; sometime I’ll try to add it).

It is then usually explained that the centrifugal (outward) force is an illusion and the real physics is down to the inertia of the mass (and is thus explained by Newton’s 1st law of motion).  However, when you consider the dynamics of gauge boson exchanges causing gravitational mass, you realise by Einstein’s equivalence principle (the equivalence between inertial and gravitational mass) that quantum gravity is must explain inertial mass as well as gravitational mass, and must therefore explain Newton’s 1st law of motion.

As we know, at least in the part of the universe we inhabit, any gauge boson radiation exchange causing gravitation and inertia normally occurs with isotropic symmetry in all directions with all the other masses in the universe.   Hence, earth’s radius is simply compressed uniformly by the amount general relativity predicts, (1/3)GM/c2 = 1.5 mm.  Therefore you only usually feel forces from this Yang-Mills quantum gravity mechanism due to asymmetries such as the presence of nearby, non-receding masses.  The earth is an asymmetry, and you get pushed towards it, because because the earth isn’t receding from us siginficantly like the distant masses in the universe.  Because the earth isn’t receding in spacetime with a velocity that increases with its apparent time past from us (and this a force directed away from us equal to its mass multiplied by the rate of change of velocity as a function of observable time past, F = ma), it doesn’t have a force directed away from us, so the gauge bosons it transmits to us don’t carry a recoil force towards us by Newton’s 3rd law.  Hence, it acts as a shield because it isn’t receding.

The dynamics of inertia are not very simple: http://thumbsnap.com/v/ZF9FQD7v.jpg shows some dynamics but not the FitzGerald-Lorentz contraction of the atoms at different places in the mass.  The orbital speed of the atoms at different places in the mass is slightly different: those further from the origin of the curvature (eg, the centre of the orbit) move faster than those located closer.  However, the spatial distribution of the atoms in the mass does not vary the overall effect, what counts is the mass and its speed. 

When a mass moves along a straight line, the paths of successive gauge bosons emitted by perpendicular to its trajectory by atoms of the mass (which is spread out spatially) are parallel, but when it moves on a curved trajectory, the paths of successive transmission of gauge bosons emitted on the side facing the origin of the curvature (say the centre of a circular orbit, or a focus in an elliptical orbit) are not parallel but instead converge at the centre or focus of the orbit.  On the other side of the orbital mass, successive gauge bosons emitted perpendicular to its direction of motion diverge from one another.  The difference in the angular distribution of the gauge bosons on the two sides emitted by a mass moving on a curved trajectory causes a real centrifugal force, ie, it is the origin of the inertial force which opposes gravity and keeps the mass orbiting without either falling inward or flying outward.  It is fairly clear that to prove this rigorously will be the next step, following the kind of dynamics described at http://feynman137.tripod.com/#a.

If you consider a gyroscope’s physics, see http://www.mariner.connectfree.co.uk/html/gyro.htm, the angular momentum effects are subtle when you get away from mathematical models and try to use simple physical concepts; for example see http://www.newton.dep.anl.gov/askasci/phy99/phy99191.htm:

‘If you push sideways a speeding car you do not expect the path of the car to suddenly change so as to lie along the direction of the push.  Rather, you expect the car to acquire a little extra velocity in the direction of the push, and the combined action of this new velocity and the car’s original velocity to result in a path mostly along the original direction but deflected slightly towards the direction of the push.  The key insight is that a force changes directly the velocity of an object and not its path, and the path only changes eventually, via the change in velocity.’

Professor Eric Laithwaite turned the gyroscope into a tool for mocking the mainstream of physics in the 1974 Royal Institution Christmas Lectures he delivered, causing uproar.  It is dangerous to go down that road, see the videos of the lectures at http://www.gyroscopes.org/1974lecture.asp:

‘Air powered gyroscope (5000rpm – 8lb). Searching for centrifugal force. Gyroscope hanging over the top of a table. Out of balance by 2kg. … Gyroscope on an arm with a second pivot point. Making a body lighter than it is. … Denis lifts a 18lb gyroscope with a 6lb shaft running at 2000rpm. … The energy contained within a gyroscope. … What’s wrong with the scientific world? … Ohm’s law only applies to DC and not AC.’

Laithwaite showed evidence that Newton’s laws don’t apply in situations where the acceleration of mass is changing (they do apply where the velocity is changing).  Laithwaite may have made a mistake in trying to question empirical laws, after all the equations which Einstein got from special relativity were the already-known FitzGerald-Lorentz contraction and time dilation, and other electromagnetic theory results.  Nobody sensible attacks empirically defensible laws.

Poor old Royal Institution, having such a load of crackpotism transmitted on TV!  Little did they expect a crackpot lecture when they invited the distinguished Professor Laithwaite to explain the gyroscope at the lectures initiated over a century earlier by Michael Faraday.  The problem is that, as you can see in the lectures he gave, he did experiments which were transmitted on TV and demonstrated all of his claims.

(I haven’t replicated Laithwaite’s experiments with gyroscopes, but I can tell you that Ohm’s law only applies to steady state systems: when you send logic pulses, the logic pulses can be shorter than the size of the circuit, so they certainly can’t tell if the circuit is complete or not (or what its complete resistance is) when they start out.  In fact, logic pulses start out the same regardless of whether the circuit is complete.  You can send a logic pulse into an unterminated transmission line, where Ohm’s law would say has infinite resistance because the two conductors are separate by insulators.  What happens in this case was worked out by Heaviside around 1875, when he was experimenting with and mathematically modelling the undersea telegraph cable between Newcastle and Denmark.  Heaviside found that electric signals travel at the speed of light, and they have no way of telling in advance of travelling around the circuit, what the resistance of the complete circuit will turn out to be.  Instead, Heaviside found that there is what he considered – like Maxwell – to be an aetherial effect called impedance which has the same units as resistance (Ohm) but behaves very differently, being dependent only on the geometry of the conductors involved and the insulator used.)

The Royal Institution refused to publish the text of Laithwaite’s lectures (although the lectures were transmitted live on TV by the BBC and video recorded on tape).  Wikipedia states that Laithwaite responded by quoting a cynical comment by quantum field theorist, Professor Freeman Dyson:

“The scientific establishment, in the form of the Royal Institution, rejected his theory and his lecture was not published by the RI. His feelings on this can be seen in one of the 19741975 Royal Institution Christmas Lectures which he presented. In an apparent defence of his position he quoted Freeman Dyson: ‘Most of the crackpot papers that are submitted to the Physical Review are rejected, not because it is impossible to understand them, but because it is possible. Those that are impossible to understand are usually published.’ (Freeman Dyson, Innovations in Physics, Scientific American, September 1958).”

(That 1958 Dyson article in Sci. Am. Vol. 199, No. 3, pp. 74-82, is very important historically.  It quotes Niels Bohr’s statement to Wolfgang Pauli: ‘We are all agreed that your theory is crazy. The question which divides us is whether it is crazy enough to have a chance of being correct. My own feeling is that is not crazy enough.’  Dyson also states in the article: ‘I have observed in teaching quantum mechanics (and also in learning it) that students go through the following experience: The student begins by learning how to make calculations in quantum mechanics and get the right answers; it takes about six months. This is the first stage in learning quantum mechanics, and it is comparatively easy and painless. The second stage comes when the student begins to worry because he does not understand what he has been doing. He worries because he has no clear physical picture in his head. He gets confused in trying to arrive at a physical explanation for each of the mathematical tricks he has been taught. He works very hard and gets discouraged because he does not seem able to think clearly. This second stage often lasts six months or longer, and it is strenuous and unpleasant. Then, quite unexpectedly, the third stage begins. The student suddenly says to himself, “I understand quantum mechanics”, or rather he says, “I understand now that there isn’t anything to be understood”. The difficulties which seemed so formidable have mysteriously vanished. What has happened is that he has learned to think directly and unconsciously in quantum mechanical language, and he is no longer trying to explain everything in terms of pre-quantum conceptions.’  This is a gutless surrender to the Copenhagen Interpretation.)

It is significant that Laithwaite was a Professor at Imperial College of London University, which was a hotbed of dissent in theoretical physics: Professor Herbert Dingle was there at the same time (note that the Wikipedia article on him is prejudiced by a disgraceful error that I have pointed out on the discussion page of the article) and also Theo Theocharis who graduated there in the early 1980s and stayed on to do- as I understand it – do a PhD on the errors of stringy stuff in mainstream physics (naturally that had to be stopped).  Theocharis and M. Psimopoulos did succeed in getting an attack on the Copenhagen Interpretation etc into a peer-reviewed journal: ‘Where Science Has Gone Wrong’, Nature, v329, p595, 1987.  However, that just caused more uproar:

‘Teachers of history, philosophy, and sociology of science … are up in arms over an attack by two Imperial College physicists … who charge that the plight of … science stems from wrong-headed theories of knowledge. … Scholars who hold that facts are theory-laden, and that experiments do not give a clear fix on reality, are denounced. … Staff on Nature, which published a cut-down version of the paper after the authors’ lengthy attempts to find an outlet for their views, say they cannot recall such a response from readers. ‘It really touched a nerve,’ said one. There was unhappiness that Nature lent its reputation to the piece.’ – Jon Thurney, Times Higher Education Supplement, 8 Jan 88, p2. [This refers to the paper by T. Theocharis and M. Psimopoulos, ‘Where Science Has Gone Wrong’, Nature, v329, p595, 1987.]

The dangers of pointing out errors in orthodoxy without correcting them at the same time are potentially massive.  Hans Christian Anderson and George Orwell effectively explain problems in modern physics between the research and the teaching orthodoxy:

‘The Emperor realized that the people were right but could not admit to that. He though it better to continue the procession under the illusion that anyone who couldn’t see his clothes was either stupid or incompetent. And he stood stiffly on his carriage, while behind him a page held his imaginary mantle.’ – Hans Christian Anderson, 1837.

Crimestop means the faculty of stopping short, as though by instinct, at the threshold of any dangerous thought. It includes the power of not grasping analogies, of failing to perceive logical errors, of misunderstanding the simplest arguments if they are inimical to (an authority) and of being bored or repelled by any train of thought which is capable of leading in a heretical direction. Crimestop, in short, means protective stupidity.’ – George Orwell, 1949.

String theory being ‘not even wrong’ demonstrates this very nicely.

Gravity Equation Discredits Lubos Motl

Louise Riofrio published some physics papers on a model of cosmology based on a simple relationship

GM = tc3

But then Assistant Professor Lubos Motl of Harvard University (a string theorist who religiously believes in 10/11 dimensional spacetime, but has no objective evidence for it whatsoever) made some rude sexist remarks about her being female on his Reference Frame blog, and claimed this equation to have no physical connection.  He dismissed it as merely dimensional analysis.  Being thus duped, I stupidly believed him at first, but now it is clear that he was not even wrong:

Simply equate the rest mass energy of m with its gravitational energy mMG/R with respect to large mass of universe M located at an average distance of R = ct from m.

Hence E = mc2 = mMG/(ct)

Cancelling and collecting terms,

GM = tc3

So Louise’s formula is derivable, while extra dimensional Lubos is as usual proved to be not even wrong (just like his beloved string theory).  But women physicists are more careful and so more likely to be correct.  They don’t go dismissing things they can’t understand by making a sexist remark, so they are more likely to get the physics correct.

In more detail:

To prove Louise’s MG = tc3 (for a particular set of assumptions which avoid a dimensionless multiplication factor of e3 which could be included according to my detailed calculations from a gravity mechanism):

(1) Einstein’s equivalence principle of general relativity:

gravitational mass = inertial mass.

(2) Einstein’s inertial mass is equivalent to inertial mass potential energy:

E = mc2

This equivalent energy is “potential energy” in that it can be released when you annihilate the mass using anti-matter.

(3) Gravitational mass has a potential energy which could be released if somehow the universe could collapse (implode):

Gravitational potential energy of mass m, in the universe (the universe consists of mass M at an effective average radius of R):

E = mMG/R

(4) We now use principle (1) above to set equations in arguments (2) and (3) above, equal:

E = mc2 = mMG/R

(5) We use R = ct on this:

c3 = MG/t

or

MG = tc3

Which is Louise’s equation. QED.

Christine Dantas has a PhD in astrophysics and studies Smolin’s very mathematical loop quantum gravity as an alternative to string theory.  However, after listing the evidence for loop quantum gravity, Lubos Motl then subjected her to dismissive rudeness (calling her guilty of ‘sloppy thinking‘ was horribly inaccurate and also hypocritical of Lubos, seeing his sloppy uncheckable claims for extra dimensions and string, and his errors such as the example above) combined with his usual loud sexist comments.  Lubos Motl seems determined to stop women rising to prominent positions in physics.  Why does he not want this?  Is it because the hot air of string hype may be reduced, I wonder?

Even his senior at Harvard, string theorist Professor Lisa Randall, states in the preface of her nicely caveated and polished book Warped Passages that she does not entirely agree with Lubos’ view of females, and she does admit the possibility that string may be not even wrong if it can’t be checked.

If Lubos is the role model of macho physics in action, then the future of physics certainly lies with female physicists who don’t allow such hormone driven prejudices to destroy their objective judgement on scientific matters.  It is largely because of pseudo-macho hype from male string theorists, such as Lubos et al., (I won’t mention Witten’s name here because he is nowhere near as rude as Lubos) mathematical physics gets ever less popular.  (More on the decline: here.)

I’m reading Woit’s course materials on Representation Theory as time permits (this is deep mathematics and takes time to absorb and to become familiar with).  Wikipedia gives a summary of representation theory and particle physics:

‘There is a natural connection, first discovered by Eugene Wigner, between the properties of particles, the representation theory of Lie groups and Lie algebras, and the symmetries of the universe. This postulate states that each particle “is” an irreducible representation of the symmetry group of the universe.’

Woit’s historical approach in his course notes is very clear and interesting, but is not particularly easy to read at length on a computer screen, and ideally should be printed out and studied carefully.  I hope it is published as a book with his arXiv paper on applications to predicting the Standard Model.  I’m going to write a summary of this subject when I’ve finished, and will get to the physical facts behind the jargon and mathematical models.  Woit offers the promise that this approach predicts the Standard Model with electroweak chiral symmetry features, although he is cautious about it, which is the exact opposite of the string theorists in the way that he does this, see page 51 of the paper (he is downplaying his success in case it is incomplete or in error, instead of hyping it).

By contrast, Kaku recently hyped string theory by claiming that it predicts the Standard Model, general relativity’s gravity, and lots more; but of course this is completely untrue, because in string theory, to get it to work, you first have to fiddle the dimensions to 10 just in order to produce particle physics and to 11 to produce gravity (although the 10-11 dimensions paradox was allegedly overcome by Witten’s M-theory in 1995, which is a kind of mathematical Holy Trinity).

In no case has the string theory – even once fiddled to a number of dimensions that makes it work “ad hoc” – then managed to make even a single checkable physical prediction!

This is why string theory is a complete disgrace as physics, although Woit (perhaps because he now works in a mathematical department) is always keen to kindly say that at least string theory has led to an increased mathematical understanding of extra dimensional manifolds like solutions to the Calabi-Yau manifold which gives about 10500 metastable ground states of the vacuum (and thus 10500 ‘dark energy’/cosmological constant levels, forming Susskind’s anthropic ‘cosmic multiverse landscape’ of universes!) in an oscillating string due to the many possible parameters of the 6 dimensional manifold’s size and shape dimensions (how elegant and how beautiful … I don’t think).

More: see http://electrogravity.blogspot.com/ and https://nige.wordpress.com/2006/09/30/keplers-law-from-kinetic-energy/

Predictions of Quantum Field Theory (draft introductory passages)

(INSERT ILLUSTRATIONS, MATHS, PROOFS, TABLES FROM MY OLD SITES)

Introduction Modern physics is based on the implications of quantum field theory, the quantum theory of fields. The mathematical and practical utility of the theory is proved by the fact that it predicts thousands of particle reaction rates to within a precision of 0.2 percent, and the non-nuclear quantum field theory of electrons (quantum electrodynamics) predicts the Lamb shift and the magnetic moment of the electron more accurately than any other theory in the history of science.Paul Dirac founded quantum field theory by guessing a relativistic time-dependent particle-applicable version of the Schroedinger wave equation (that modelled the electron in the atom). Schroedinger’s equation could not be used for free particle because it was non-relativistic, so its solutions were not bounded by the constraint of ‘relativity’ (or spacetime) whereby changing electromagnetic fields are restricted to propagate only the distance ct in the time interval t.

Spectacular physical meaning was immediately derived from Dirac’s equation because it implied the existence of a bound state electron-positron sea in the vacuum throughout spacetime, and predicted that a gamma ray of sufficient energy travelling in a strong electromagnetic field – near a high atomic (proton) number nucleus – can release an electron-positron pair. This creation of positrons (antimatter electrons, positively charged) was observed in 1932, confirming Dirac.

Pair production only occurs where gamma rays enter a very strong electric field (caused by the close confinement of many protons in a nucleus), because in a strong electric field the Dirac sea is polarized strongly enough along the electric field lines, weakening the electron-positron binding energy. Polarization consists of separation of charges along electric field lines. As the average distance of vacuum electrons from positrons is slightly increased, the Coulomb binding energy falls, hence gamma rays with energy above the energy of a freed electron-positron pair (1.022 MeV) have a significant chance of freeing such a pair. This pair production mechanism in practical use enables lead nuclei to stop shield gamma rays with energies above 1.022 MeV. (Of course, electrons in atoms can also shield gamma rays by the Compton and photoelectric effects.)

Gravity (readers should pay special attention to the following!)

Electrons and positrons in bound states in the vacuum take up space, and are fermions; each space taken up by a fermion cannot be shared with another fermion as demonstrated by the experimental verification of the Pauli exclusion principle. Therefore, when a real fermion moves, it cannot move into a virtual fermion’s space. The vacuum charges are therefore displaced around the moving real charge according to the restraint of Pauli’s exclusion principle. We can make definite predictions from this because the net flow of the Dirac sea around a moving real fermion is (by Pauli’s exclusion principle) constrained have exactly equal charge and mass but oppositely directed motion (velocity, acceleration) to the real moving fermion. This prediction means that in the cosmological setting where real charges (matter) is observed to be receding at a rate proportional to radial spacetime, there is an outward force of matter given by Newton’s second law F = mdv/dt = mdc/dt = mcH where H is Hubble’s constant.

By Newton’s 3rd law, we then find that there is an equal inward reaction force carried by some aspect of the Dirac sea. This predicts the strength of gravity. The duality of this Dirac sea pressure gravity prediction is that the inward reaction force is carried via the Dirac sea specifically by the light speed gauge boson radiation of a Yang-Mills quantum field theory, which allows us to deduce the nature of matter from the quantitative shielding area associated with a quark or with a lepton such as an electron. This gives us the size of a fundamental particle as the black-hole radius, not the Planck length, so we obtain useful information from factual input without any speculations whatsoever.

The Standard Model

The greatest difficulty for a quantum field theory is the prediction of all observed properties of matter and energy, which are summarised by the Standard Model SU(3)xSU(2)xU(1) which is a set of symmetry groups constraining quantum field theory to make contact with particle physics correctly. The problem here is that the symmetry description varies as a function of collision energy or distance of closest approach.

Unfortunately, the Standard Model as it stands does not consistently model all of particle physics because different forces unify at different energies or distances from a particle, which implies that the symmetries are broken at low energy but become unified at high energy. The symmetries, while excellent for most properties, omit masses entirely.

The Standard Model does not supply rigorous or usefully predictive (checkable) mechanisms for electroweak symmetry breaking which is the process by which the SU(2)xU(1) electroweak symmetry breaks to yield U(1) at low energy. It is obvious that the 3 weak gauge bosons of the SU(2) symmetry are attenuated in the polarized vacuum somehow, such as by a hypothetical ‘Higgs field’ of inertia-giving (and hence mass-giving) ‘Higgs bosons’, but there are no properties scientifically predicted for such a field. The SU(3) symmetry unitary group describes the strong nuclear (gluon) field by means of a new symmetry parameter called colour charge.Instead of coming up with a useful, checkable, electroweak symmetry breaking theory, the mainstream effort has been devoted since 1985 to a speculative, non-checkable hypothesis that the Standard Model particles and gravity can be explained by string theory. One major problem with string theory is that it’s claim to predict unification at extremely high energy is uncheckable; the energy is beyond experimental physics and would require going back in time to the moment of the big bang or using a particle accelerator as big as the solar system.

Another major problem with string theory is that its alleged unification of gravity and the standard model rests upon unifying speculative (unchecked) ideas about what quantum gravity is (gravitons mediated between mass-giving Higgs bosons), with speculative ideas concerning 10/11 dimensional time (M-theory). Speculation is only useful in physics where there is some hope of experimental checks. If a speculation is made that God exists, that speculation is not scientific because it is impossible in principle to refute it. Similarly, extra dimensions cannot even in principle be refuted.

Finally, string theory invents many properties of the universe in such a vague and ambiguous way that virtually any experimental results could be read as a validation of some variant of a stringy speculation. Such experimental results could also be consistent with many other theories, so such indirect ‘validation’ will turn physics into either a farce and battleground or into an orthodox religion whose power comes not from unique evidence by from suppressing counter evidence as a religious-type heresy. Critics of general relativity in 1919 wrongly claimed that there are potentially other theories that predicted the correct deflection of sunlight by gravity, or they disputed the accuracy of the evidence (Sir Edmund Whittaker being an example). However, the starlight deflection in general relativity can be justified on energy conservation grounds, from the way that gravitational potential energy – gained by a photon approaching the sun – must be used entirely for directional deflection and not partly used for speeding up an object as would occur to an object initially moving slower than the speed of light (light cannot be speeded up, so all gained gravitational energy is used for deflecting it). So such local predictions of general relativity are constrained to empirical facts. However, Einstein also ‘predicted’ in 1917 from general relativity that the entire universe is static and not expanding, which is a completely false prediction and was based on Einstein’s ad hoc cosmological constant value.

If Einstein’s steady state theory of cosmology had been defended based on the correct (local) predictions of the theory, then the failure of general relativity as a steady state cosmology may never have been exposed either by experiment (peer-review would suppress big bang crackpotism and force authors to invent ‘epicycles’ to fit experiments to the existing paradigm) or theory (Einstein’s steady state solution was unstable theoretically!).

The problem is that string theory, quite unlike general relativity, cannot even be objectively criticised because it contains no objective physics, it is just a ‘hunch’ to use ‘t Hooft’s description. String theory, explains Woit, is not even wrong. It has no evidence and can never have direct evidence because we can only experiment and observe in a limited number of dimensions which is smaller than the number of dimensions postulated by string theory, and even if it did have some alleged indirect evidence, that would destroy rigor in science by turning it into a religion of those who believe the holy alleged evidence, and those who have alternatives.

This is because almost any evidence can be ‘explained away’ by some of the numerous versions of string theory. Supersymmetry is a 10 dimensional string theory in which there is a bosonic superpartner for every fermion of the Standard Model. This is supposed to unify forces, but that cannot be checked as we can’t measure how forces unify since the energy is way too high. In addition, of the 10 dimensions, 6 are rolled up into a Calabi-Yau manifold that has many variable parameters, and hence a vast number of possible states! Nobody knows exactly how many different ground states of the universe are even possible – if the Calabi-Yau manifold is real, but it is probably between 10^100 and 10^1000 solutions. These numbers are far greater than the total number of fermions in the universe (about 10^80). There is no way to predict objectively which vacuum state describes the universe. The best that can be done is to plot a ‘landscape’ of solutions as a three dimensional plot and then to claim that the nearest one to experimental data is the prediction, by the ‘anthropic principle’ (which says we would not exist if it was another state, because the laws of nature are sensitive to the value of the vacuum energy).

By the same scientifically fraudulent argument, a child asked ‘what is 2 + 2?’ would reply: ‘it is either 1, 2, 3, 4, 5, 6, 7 … or 10^1000, the correct answer being decided by whichever solution of mine happens to correspond to the experimentally determined fact, shown by the counting beads!’

Sir Fred Hoyle used the anthropic argument (sometimes falsely called a principle) to ‘predict’ life exists due to nuclear carbon energy level which allows three alpha particles (helium-4 nuclei) to stick together forming carbon-12. He did this simply because his theory would fail otherwise. However, it was a subjective ‘I exist, therefore helium fuses’ prediction and was not objectively based on an understanding of nuclear science. Therefore, Hoyle did not win a Nobel Prize, and his so-called ‘explanation’ of the carbon-12 energy level – despite correctly predicting the value later observed in experiment – does not deliver you hard physics.

To be added:

OBJECTIVE DETAILS OF THE STANDARD MODEL (from my old site)

NATURE OF GAUGE BOSONS (new section on physical propagation of polarized radiations)