Nature reviews Dr Woit’s book Not Even Wrong and Smolin’s book Trouble; Lubos Motl’s string snaps; Professor Bert Schroer puts string theory out of its misery

This WordPress post is a revised and updated version of the post here.)

‘The problem is not that there are no other games in town, but rather that there are no bright young players who take the risk of jeopardizing their career by learning and expanding the sophisticated rules for playing other games.’

– Prof. Bert Schroer, http://arxiv.org/abs/physics/0603112, p46

‘My final conclusion is that the young and intelligent Harvard professor Lubos Motl has decided to build his career on offering a cartering service for the string community. He obviously is a quick scanner of the daily hep-th server output, and by torching papers which are outside the credo of string theorists (i.e. LQG, AQFT) he saves them time. The downgrading of adversaries is something which has at least the tacit consent of the community. It is evident that he is following a different road from that of using one’s intellectual potential for the enrichment of knowledge about particle physics. If one can build a tenure track career at a renown university by occasionally publishing a paper but mainly keeping a globalized community informed by giving short extracts of string-compatible papers and playing the role of a Lord of misuse to outsiders who have not yet gotten the message, the transgression of the traditional scientific ethics [24] for reasons of career-building may become quite acceptable. It would be interesting to see into what part of this essay the string theorists pitbull will dig his teeth. [He’ll just quietly run away, Professor Schroer! All these stringers don’t have any answer to the facts so they run away when under pressure, following Kaku’s fine example.]’ – Prof. Bert Schroer, http://arxiv.org/abs/physics/0603112, p22

First, Kaku ‘accidentally’ published on his website a typically inaccurate New Scientist magazine article draft which will appear in print in mid-November 2006. He falsely claimed:

‘The Standard Model of particles simply emerges as the lowest vibration of the superstring. And as the string moves, it forces space-time to curl up, precisely as Einstein predicted. Hence, both theories are neatly included in string theory. And unlike all other attempts at a unified field theory, it can remove all the infinities which plague other theories. But curiously, it does much more. Much, much more.’

Actually, it doesn’t, as Peter Woit patiently explains. String theory starts with a 1-dimensional line, when it oscillates time enters so it becomes a 2-dimensional worldsheet, which then needs at least 8 more dimensions added to give the resonances of particle physics satisfying conformal symmetry. So you end up with at least 10 dimensions, and because general relativity has 4 spacetime dimensions (3 spacelike, 1 timelike), you obviously somehow need to compactify or roll up 6 dimensions, which is done using a 6-d Calabi-Yau manifold, that has many size and shape parameters, giving the string something like 10^500 vibrational metastable resonance states and that many different solutions. The Standard Model might or might not be somewhere in there. Even if it is, you then have the problem of explaining all the other (unphysical) solutions.

10^500 is actually too much to ever work out rigorously in the age of the universe: it is 1 followed by 500 zeroes. For comparison, the total number of fermions in the universe is only about 10^80. The age of the universe measured in seconds is merely 4.7 x 10^17.

So, if stringers could evaluate one solution per second, it would take them ~(10^500)/(10^17) = 10^483 times the age of the universe. Now let’s assume they could somehow evaluate one solution every millionth of a second. Then they would get through the problem in (10^483)/(10^6) = 10^477 times the age of the universe.

Now suppose I came up with a theory which predicted even just 2 different solutions for the same thing. If one of them turned out to be consistent with the real world, and one didn’t, I could not claim to predict reality. Dirac’s quantum field theory equation in 1929 gives an example of how to treat physical solutions. His spinor in the Hamiltonian predicts E = +/-mc^2 which is different from Einstein’s E = mc^2.

Dirac realised that ALL SOLUTIONS MUST BE PHYSICAL, so he interpreted the E = -mc^2 solution as the prediction of antimatter, which Anderson discovered as the “positron’’ (anti-electron) in 1932. This is the way physics is done.

So the trouble is due to the fact that a large number of extra dimensions are needed to get string theory to ‘work’ as an ad hoc model, and to make those extra dimensions appear invisible they are curled up into a Calabi-Yau manifold. Because there are loads of parameters to describe the exact sizes of the many dimensions of the manifold, it is capable of 10^500 states of resonance, and there is no proof that any of those gives the standard model of particle physics.

Even if it does, it is hardly a prediction because the theory is so vague it has loads of unphysical solutions. Susskind’s stringy claim (see here for latest Susskind propaganda) that all the solutions are real and occur in other parallel universes is just a religious belief, since it can’t very well be checked. The anthropic principle can make predictions but it is very subjective and is not falsifiable, so doesn’t fit in with Popper’s criterion of science.

As for its claim to predict gravity, it again only predicts the possibility of unobservable spin-2 gravitons, and says nothing checkable about gravity. See the comment by Eddington made back in 1920, quoted here:

‘It is said that more than 200 theories of gravitation have have been put forward; but the most plausible of these have all had the defect that that they lead nowhere and admit of no experimental test.’

– A. S. Eddington, Space Time and Gravitation, Cambridge University Press, 1920, p64. Contrast that caution to Witten’s stringy hype:

‘String theory has the remarkable property of predicting gravity.’

– Edward Witten, superstring 10/11 dimensional M-theory originator, Physics Today, April 1996.

Nature’s review is available here and it reads in part:

Nature 443, 491 (5 October 2006). Published online 4 October 2006:

Theorists snap over string pieces

Geoff Brumfiel

‘Abstract

‘Books spark war of words in physics. Two recently published books are riling the small but influential community of string theorists, by arguing that the field is wandering dangerously far from the mainstream.

‘The books’ titles say it all: Not Even Wrong, a phrase that physicist Wolfgang Pauli used to describe incomplete ideas, and The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. Both articulate a fear that the field is becoming too abstract and is focusing on aesthetics rather than reality. Some physicists even warn that the theory’s dominance could pose a threat to the scientific method itself.

‘Those accusations are vehemently denied by string theorists, and the books – written by outsiders – have stirred deep resentment in the tight-knit community. Not Even Wrong was published in June and The Trouble with Physics came out in September; shortly after they appeared on the Amazon books website, string theorist Lubos Motl of Harvard University posted reviews furiously entitled “Bitter emotions and obsolete understanding of high-energy physics’’ and “Another postmodern diatribe against modern physics and scientific method’’. As Nature went to press, the reviews had been removed.

‘Few in the community are, at least publicly, as vitriolic as Motl. But many are angry and struggling to deal with the criticism. “Most of my friends are quietly upset,’’ says Leonard Susskind, a string theorist at Stanford University in California. …

‘The books leave string theorists such as Susskind wondering how to approach such strong public criticism. “I don’t know if the right thing is to worry about the public image or keep quiet,’’ he says. He fears the argument may “fuel the discrediting of scientific expertise’’.

‘That’s something that Smolin and Woit insist they don’t want. Woit says his problem isn’t with the theory itself, just some of its more grandiose claims. ‘‘There are some real things you can do with string theory,’’ he says. [Presumably Woit means sifting through 10^500 metastable solutions trying to find one which looks like the Standard Model, or using string theory to make up real propaganda. ]’

– Geoff Brumfiel, Nature.

Lubos Motl responds on Peter Woit’s blog with disgusting language, as befitting the pseudo-scientific extra dimensional string theorist who can’t predict anything checkable:

Lubos Motl Says: October 3rd, 2006 at 8:14 pm

Dear crackpot Peter, you are a damn assh***. I will sue you for the lies those crackpot commenters telling on me on your crackpot blog. I hope you will die soon. The sooner the better.

So: be prepared to hear from my lawyer.

Best Lubos
_______________

Note: string theorist Aaron Bergman reviewed Not Even Wrong at the String Coffee Table, and now he writes in a comment on Not Even Wrong that if he reviewed Smolin’s Trouble he would ‘probably end up being a bit more snide’ in the review than Sean Carroll was on Cosmic Variance. That really does sum up the arrogant attitude problem with stringers…

Update 6 October 2006

The distinguished algebraic quantum field theorist, Professor Bert Schroer, has written a response to Lubos Motl in the form of an updated and greatly revised paper, the draft version of which was previously discussed on Dr Peter Woit weblog Not Even Wrong: http://arxiv.org/abs/physics/0603112. (Schroer’s publication list is here.) He analyses the paranoia of string theorists on pages 21 et seq.

He starts by quoting Motl’s claim ‘Superstring/M-theory is the language in which God wrote the world’, and remarks:

‘Each time I looked at his signing off, an old limerick which I read a long time ago came to my mind. It originates from pre-war multi-cultural Prague where, after a performance of Wagner’s Tristan and Isolde by a maestro named Motl, an art critic (who obviously did not like the performance) wrote instead of a scorcher for the next day’s Vienna newspaper the following spooner (unfortunately untranslatable without a complete loss of its lovely polemic charm):

‘Gehn’s net zu Motl’s Tristan
schaun’s net des Trottels Mist an,
schaffn’s lieber ’nen drittel Most an
und trinkn’s mit dem Mittel Trost an’

(A very poor translation is:

Do not go to Motl’s Tristan.
Don’t appear at this nincompoop muck,
Get yourself a drink instead
And remain in comfort.)

‘After having participated in Peter Woit’s weblog and also occasionally followed links to other weblogs during March-June 2006 I have to admit that my above conclusions about Lubos Motl were wrong. He definitely represents something much more worrisome than an uninhibited name-calling (crackpot, rat, wiesel…..) character who operates on the fringes of ST and denigrates adversaries of string theory23 in such a way that this becomes an embarrassing liability to the string community. If that would be true, then at least the more prominent string theorists, who still try to uphold standards of scientific ethic in their community, would keep a certain distance and the whole affair would not even be worth mentioning in an essay like this. But as supporting contributions of Polchinski and others to Motl’s weblog show, this is definitely not the case. My final conclusion is that the young and intelligent Harvard professor Lubos Motl has decided to build his career on offering a cartering service for the string community. He obviously is a quick scanner of the daily hep-th server output, and by torching papers which are outside the credo of string theorists (i.e. LQG, AQFT) he saves them time. The downgrading of adversaries is something which has at least the tacit consent of the community. It is evident that he is following a different road from that of using one’s intellectual potential for the enrichment of knowledge about particle physics. If one can build a tenure track career at a renown university by occasionally publishing a paper but mainly keeping a globalized community informed by giving short extracts of string-compatible papers and playing the role of a Lord of misuse to outsiders who have not yet gotten the message, the transgression of the traditional scientific ethics24 for reasons of career-building may become quite acceptable. It would be interesting to see into what part of this essay the string theorists pitbull will dig his teeth.’

Peter Woit links to Risto Raitio’s weblog discussion of Schroer’s paper which points out aspects which are even more interesting:

‘For the present particle theorist to be successful it is not sufficient to propose an interesting idea via written publication and oral presentation, but he also should try to build or find a community around this idea. The best protection of a theoretical proposal against profound criticism and thus securing its longtime survival is to be able to create a community around it. If such a situation can be maintained over a sufficiently long time it develops a life of its own because no member of the community wants to find himself in a situation where he has spend the most productive years on a failed project. In such a situation intellectual honesty gives way to an ever increasing unwillingness and finally a loss of critical abilities as a result of self-delusion.

‘I would like to argue that these developments have been looming in string theory for a long time and the recent anthropic manifesto [1] (L. Susskind, The Cosmic Landscape: String Theory and the Illusion of Intelligent Design) (which apparently led to a schism within the string community) is only the extreme tip of an iceberg. Since there has been ample criticism of this anthropic viewpoint (even within the string theory community), my critical essay will be directed to the metaphoric aspect by which string theory has deepened the post standard model crisis of particle physics. Since in my view the continuation of the present path could jeopardize the future research of fundamental physics for many generations, the style of presentation will occasionally be somewhat polemic.

‘An age old problem of QFT which resisted all attempts to solve it is the problem of existence of models i.e. whether there really exist a QFT behind the Lagrangian name and perturbative expressions. Since there are convincing arguments that perturbative series do not converge (they are at best asymptotic expressions) this is a very serious and (for realistic models) unsolved problems. The problem that particle physics most successful theory of QED is also its mathematically most fragile has not gone away. In this sense QFT has a very precarious status very different from any other area of physics in particular from QM. This is very annoying and in order to not to undermine the confidence of newcomers in QFT the prescribed terminology is to simply use the word ‘‘defined” or ‘‘exists” in case some consistency arguments (usually related in some way to perturbation theory) have been checked.

‘These problems become even worse in theories as string theory (which in the eyes of string protagonists are supposed to supersede QFT). In this case one faces in addition to the existence problem the conceptual difficulty of not having been able to extract characterizing principles from ad hoc recipes

‘… Particle physics these days is generally not done by individuals but by members of big groups, and when these big caravans have passed by a problem, it will remain in the desert. A reinvestigation (naturally with improved mathematical tool and grater conceptual insight) could be detrimental to the career of somebody who does not enjoy the security of a community.

‘In its new string theoretical setting its old phenomenological flaw of containing a spin=2 particle was converted into the ‘‘virtue” of the presence of a graviton. The new message was the suggestion that string theory (as a result of the presence of spin two and the apparent absence of perturbative ultraviolet divergencies) should be given the status of a fundamental theory at an energy scale of the gravitational Planck mass, 10^19 GeV, i.e. as a true theory of everything (TOE), including gravity. Keeping in mind that the frontiers of fundamental theoretical physics (and in particular of particle physics) are by their very nature a quite speculative subject, one should not be surprised about the highly speculative radical aspects of this proposals; we know from history that some of our most successful theories originated as speculative conjectures. What is however worrisome about this episode is rather its uncritical reception. After all there is no precedent in the history of physics of a phenomenologically conceived idea for laboratory energies to became miraculously transmuted into a theory of everything by just sliding the energy scale upward through 15 orders of magnitudes and changing the terminology without a change in its mathematical-conceptual setting.

‘In this essay I emphasized that, as recent progress already forshadows, the issue of QG will not be decided in an Armageddon between ST and LQG, but QFT will enter as a forceful player once it has conceptually solidified the ground from where exploratory jumps into the blue yonder including a return ticket can be undertaken.

‘The problem is not that there are no other games in town, but rather that there are no bright young players who take the risk of jeopardizing their career by learning and expanding the sophisticated rules for playing other games.’

I’ve enjoyed Schroer’s excellent paper and the first part has quite a bit of discussion about the ultraviolet (UV) divergence problem in quantum field field where you have to take an upper limit cutoff for the charge renormalization to prevent a divergence of loops of massive nature occurring at extremely high energy. The solution to this problem is straightforward (it is not a physically real problem): there physically just isn’t room for massive loops to be polarized above the UV cutoff because at higher energy you get closer to the particle core, so the space is simply too small in size to have massive loops with charges being polarized along the electric field vector.

To explain further, if the massive particle loops are simply energized Dirac sea particles, i.e., if the underlying mechanism is that there is a Dirac sea in the vacuum which gains energy close to charges so that pairs of free electrons + positrons (and heavier loops where the field strength permits) are able to pop into observable existence close to electrons where the electric field strength is above 10^18 volts/metre, then the UV cutoff is explained: for extremely high energy, the corresponding distance is so small there is not likely to be any Dirac sea particles available in that small space. So the intense electric field strength is unable to produce any massive loops. We rely on Popper’s explanation of the uncertainty principle in this case: the massive virtual particles are low energy Dirac field particles which have simply gained vast energy from the intense field:

‘… the Heisenberg formulae can be most naturally interpreted as statistical scatter relations [between virtual particles in the quantum foam vacuum and real electrons, etc.], as I proposed [in the 1934 book The Logic of Scientific Discovery]. … There is, therefore, no reason whatever to accept either Heisenberg’s or Bohr’s subjectivist interpretation …’

– Sir Karl R. Popper, Objective Knowledge, Oxford University Press, 1979, p. 303.

‘It always bothers me that, according to the laws as we understand them today, it takes a computing machine an infinite number of logical operations to figure out what goes on in no matter how tiny a region of space, and no matter how tiny a region of time. How can all that be going on in that tiny space? Why should it take an infinite amount of logic to figure out what one tiny piece of space/time is going to do? So I have often made the hypothesis that ultimately physics will not require a mathematical statement, that in the end the machinery will be revealed, and the laws will turn out to be simple, like the chequer board with all its apparent complexities.’

– R. P. Feynman, Character of Physical Law, November 1964 Cornell Lectures, broadcast and published in 1965 by BBC, pp. 57-8.

Note that string theory claims to solve the ultraviolet divergence problem at high energy by postulating 1:1 boson to fermion supersymmetry (one massive bosonic superpartner for every fermion in the universe) which is extravagant and predicts nothing except unification of forces near the Planck scale. It is artificial and even if you want string theory to be real, there are ways of getting around that by modifying 26 dimensional bosonic string theory as Tony Smith shows (he is suppressed from arXiv now, for not following the mainstream herd into M-theory). Previous posts are here (illustrated with force unification graphs showing effect of supersymmetry) and here (background information). So everything string says is wrong/not even wrong. The greatest claims of string theory to be successful are unphysical, uncheckable.

Updated diagram of mass model: http://thumbsnap.com/vf/FBeqR0gc.gif. Now I’ll explain in detail the vacuum polarization dynamics of that model. 

In Road to Reality, Penrose neatly illustrates with a diagram how the polarization of pair-production charges in the intense electric field surrounding a particle core, shield the core charge, with a diagram in Road to Reality. He speculates that the observed long range electric charge is smaller than the core electron charge by a factor of the square root of 137, ie 11.7. His book was published in 2004 I believe. But in the August 2002 and April 2003 issues of Electronics World magazine, I gave some mathematical evidence that the ratio is 137, and not the square root of 137. However, I didn’t have a clear physical picture of vacuum polarization when I wrote the articles and did not understand the difference for the, and Penrose’s book encouraged me enormously to investigate it!

The significance is the mechanistic explanation of quantum field theory and the prediction of the masses of all observable (lepton and hadron) particles in the universe: see my illustration here. (This is a fermion:boson correspondence as I’ll explain it later in this comment, but is not an exact 1:1 supersymmetry, so force unification occurs differently to string theory, as I’ll explain later.)

In that diagram the Pi shielding factor is due to the charge rotation effect while exchange gauge bosons are emitted and received by the rotating charge. Think about Star Wars: shooting down an ICBM with a laser. In the 1980s it was proved that by rapidly spinning the ICBM along its long axis, you reduce the exposure of the skin to laser energy by a factor of Pi, as compared to a non-spinning missile, or as compared to the particle as seen end-on. What is happening is that the effective “cross-section” as we call the interaction area in particle and nuclear physics, is increased by a factor of Pi if you see the particle spinning edge on, so if the spinning particle first receives and then (after the slightest decay) remits an exchange radiation particle, then the re-emitted particle could be fired off in any direction at all (if the spin is fast), whereas if it is not spinning the particle goes back the way it came (in a head-on or normal incidence collision).

The multiplying factors in front of Pi depend on the spin dynamics. For a spin ½ particle like an electron, there are two spin revolutions per rotation which means the electron is like a Mobius strip (a loop of paper with a half twist so that both top and bottom surfaces are joined – if you try to draw a single line right the way around the Mobius strip of paper, you find it will cover both sides of the paper and will have a length of exactly twice the length of the paper, so that a Mobius strip needs to be rotated twice in order to expose the full surface – like the spin ½ electron). This gives the factor of 2. The higher factors come from the fact that the distance of the electric charge from the mass giving boson is varied

The best sources for explaining what is physically going on in quantum field theory polarization are a 1961 book by Rose (chief physicist at Oak Ridge National Lab., USA) called Relativistic Electron Theory (I quote the vital bits on my home page), the 1997 PRL article by Levine et al which experimentally confirms it by smashing electrons together and determining the change in Coulomb (again quoted on my page), and the lectures here. Those lectures originally contained an error because the electron and positron annihilation and creation process forms one “vacuum loop” correction which occurs at the energy required for pair-production of those particles, i.e., an energy of 0.511 MeV per particle, and the authors had ignored higher loops between 0.5-92,000 MeV. For example, when the energy exceeds 105 MeV, you get loops of muon-antimuons being endlessly created and annihilated in the vacuum, which means you have to add an higher order loop correction to the polarization calculation. The authors had stated the equation for electron-positron loops as being valid all the way from 0.5 MeV to 92,000 MeV, and had forgotten to include loads of other loops, although they have now corrected and improved the paper. The vital results in the paper about polarization are around page 70 for the effect on measurable electron charge and on page 85 where the electric field strength threshold is calculated.

It is obvious that quantum field theory is very poor mathematically (see quotes at top of the page http://www.cgoakley.demon.co.uk/qft).

Most professors of quantum field theory shy away from talking realities like polarization because there are gross problems. The biggest problem is that although virtual charges are created in pairs of monopoles with opposite charges that can be polarized, quantum field theory also requires the mass of the electron to be renormalized.

Since mass is the charge of gravitational force, it doesn’t occur in negative types (antimatter falls the same way as normal matter), so it is hard to see how to polarize mass. Hence the heuristic explanation of how electric fields are renormalized by polarization of pair production electric charges, fails to explain mass renormalization.

The answer seems to be that mass is coupled to the electric polarization mechanism. The massive Z_o boson is probably an electric dipole like the photon (partly negatively electric field and partly positive), but because it is massive it goes slowly and can be polarized by aligning with an electric field. If the vacuum contains Z_o bosons in its ground state, this would explain how masses arise. See comments on recent posts on this blog, and see the predictions of the masses of all particles as illustrated here shows the polarized zones around particles. Each polarized zone has inner and outer circles corresponding to the upper (UV) and lower (IR) cutoffs for particle scatter energy in QFT. The total shielding of each polarization zone is the well known alpha factor of 1/137. If the mass-producing boson is outside this polarization zone, the charge shielding reduces the mass by the alpha factor. By very little numerology, this model works extremely well.You would expect that semi-empirical relationships of the numerology sort would precede a rigorous mass predicting mechanism, just as Balmer’s formula preceded Bohr’s theory for it. Alejandro Rivero and another guy published the vital first link numerically between the Z_o boson mass and the muon/electron masses which made me pay attention and check further.

Obviously any as yet unorthodox idea may be attacked by the ‘crackpotism’ charge, but I think this one is particularly annoying to orthodoxy as it is hard to dismiss objectively.

More on Cosmic Variance here, here, here, on Not Even Wrong here, here, here, here, and on Christine Dantas’ Background Independence here.

POLARIZATION MECHANISM BY ELECTRIC DIPOLE (PAIR PRODUCTION):Dr M. E. Rose (Chief Physicist, Oak Ridge National Lab.), Relativistic Electron Theory, John Wiley & Sons, New York and London, 1961, pp 75-6:

‘The solution to the difficulty of negative energy states [in relativistic quantum mechanics] is due to Dirac [P. A. M. Dirac, Proc. Roy. Soc. (London), A126, p360, 1930]. One defines the vacuum to consist of no occupied positive energy states and all negative energy states completely filled. This means that each negative energy state contains two electrons. An electron therefore is a particle in a positive energy state with all negative energy states occupied. No transitions to these states can occur because of the Pauli principle. The interpretation of a single unoccupied negative energy state is then a particle with positive energy … The theory therefore predicts the existence of a particle, the positron, with the same mass and opposite charge as compared to an electron. It is well known that this particle was discovered in 1932 by Anderson [C. D. Anderson, Phys. Rev., 43, p491, 1933].

‘Although the prediction of the positron is certainly a brilliant success of the Dirac theory, some rather formidable questions still arise. With a completely filled ‘negative energy sea’ the complete theory (hole theory) can no longer be a single-particle theory.

‘The treatment of the problems of electrodynamics is seriously complicated by the requisite elaborate structure of the vacuum. The filled negative energy states need produce no observable electric field. However, if an external field is present the shift in the negative energy states produces a polarisation of the vacuum and, according to the theory, this polarisation is infinite.

‘In a similar way, it can be shown that an electron acquires infinite inertia (self-energy) by the coupling with the electromagnetic field which permits emission and absorption of virtual quanta. More recent developments show that these infinities, while undesirable, are removable in the sense that they do not contribute to observed results [J. Schwinger, Phys. Rev., 74, p1439, 1948, and 75, p651, 1949; S. Tomonaga, Prog. Theoret. Phys. (Kyoto), 1, p27, 1949].

‘For example, it can be shown that starting with the parameters e and m for a bare Dirac particle, the effect of the ‘crowded’ vacuum is to change these to new constants e’ and m’, which must be identified with the observed charge and mass. … If these contributions were cut off in any reasonable manner, m’ – m and e’ – e would be of order alpha ~ 1/137. No rigorous justification for such a cut-off has yet been proposed.

‘All this means that the present theory of electrons and fields is not complete. … The particles … are treated as ‘bare’ particles. For problems involving electromagnetic field coupling this approximation will result in an error of order alpha. As an example … the Dirac theory predicts a magnetic moment of mu = mu[zero] for the electron, whereas a more complete treatment [including Schwinger’s coupling correction, i.e., the first Feynman diagram] of radiative effects gives mu = mu[zero].(1 + alpha/{twice Pi}), which agrees very well with the very accurate measured value of mu/mu[zero] = 1.001…’

Notice in the above that the magnetic moment of the electron as calculated by QED with the first vacuum loop coupling correction is 1 + alpha/(twice Pi) = 1.00116 Bohr magnetons. The 1 is the Dirac prediction, and the added alpha/(twice Pi) links into the mechanism for mass here.

Most of the charge is screened out by polarised charges in the vacuum around the electron core:

‘… we find that the electromagnetic coupling grows with energy. This can be explained heuristically by remembering that the effect of the polarization of the vacuum … amounts to the creation of a plethora of electron-positron pairs around the location of the charge. These virtual pairs behave as dipoles that, as in a dielectric medium, tend to screen this charge, decreasing its value at long distances (i.e. lower energies).’ – arxiv hep-th/0510040, p 71.

‘All charges are surrounded by clouds of virtual photons, which spend part of their existence dissociated into fermion-antifermion pairs. The virtual fermions with charges opposite to the bare charge will be, on average, closer to the bare charge than those virtual particles of like sign. Thus, at large distances, we observe a reduced bare charge due to this screening effect.’ – I. Levine, D. Koltick, et al., Physical Review Letters, v.78, 1997, no.3, p.424.

Koltick found a 7% increase in the strength of Coulomb’s/Gauss’ force field law when hitting colliding electrons at an energy of 92 GeV. The coupling constant for electromagnetism is 1/137 at low energies but was found to be 1/128.5 at 92 GeV or so. This rise is due to the polarised vacuum being broken through. We have to understand Maxwell’s equations in terms of the gauge boson exchange process for causing forces and the polarised vacuum shielding process for unifying forces into a unified force at very high energy. The minimal SUSY Standard Model shows electromagnetic force coupling increasing from alpha of 1/137 to alpha of 1/25 at 10^16 GeV, and the strong force falling from 1 to 1/25 at the same energy, hence unification. The reason why the unification superforce strength is not 137 times electromagnetism but only 137/25 or about 5.5 times electromagnetism, is heuristically explicable in terms of potential energy for the various force gauge bosons. If you have one force (electromagnetism) increase, more energy is carried by virtual photons at the expense of something else, say gluons. So the strong nuclear force will lose strength as the electromagnetic force gains strength. Thus simple conservation of energy will explain and allow predictions to be made on the correct variation of force strengths mediated by different gauge bosons. Hence, no need for M-theory.

As for mechanism of gravity, the dynamics here which predict gravitational strength and various other observable and further checkable aspects, are apparently consistent with an gravitational-electromagnetic unification in which there are 3 dimensions describing contractable matter (matter contracts due to its properties of gravitation and motion), and 3 expanding time dimensions (the spacetime between matter expands due to the big bang according to Hubble’s law).  Lunsford has investigated this over SO(3,3):

http://www.math.columbia.edu/~woit/wordpress/?p=128#comment-1932

‘…I worked out and published an idea that reproduces GR as low-order limit, but, since it is crazy enough to regard the long range forces as somehow deriving from the same source, it was blacklisted from arxiv (CERN however put it up right away without complaint). … my work has three time dimensions, and just as you say, mixes up matter and space and motion. This is not incompatible with GR, and in fact seems to give it an even firmer basis. On the level of GR, matter and physical space are decoupled the way source and radiation are in elementary EM. …’

Lunsford’s paper is http://cdsweb.cern.ch/search.py?recid=688763&ln=en

Lunsford’s prediction is correct: he proves that the cosmological constant must vanish in order that gravitation be unified with electromagnetism.  As Nobel Laureate Phil Anderson says, the observed fact regarding the imaginary cosmological constant and dark energy is merely that:

“… the flat universe is just not decelerating, it isn’t really accelerating …”

http://cosmicvariance.com/2006/01/03/danger-phil-anderson

Since it isn’t accelerating, there is no dark energy and no cosmological constant: Lunsford’s unification prediction is correct, and is explicable in terms of Yang-Mills QFT.

See for example the discussion in a comment on Christine Dantas’ blog: ‘From Yang-Mills quantum gravity arguments, with gravity strength depending on the energy of exchanged gravitons, the redshift of gravitons must stop gravitational retardation being effective. So we must drop the effect of the term [0.5(Hr)^2]/c.’Hence, we predict that the Hubble law will be the correct formula.’Perlmutter’s results of software-automated supernovae redshift discoveries using CCD telescopes were obtained in about 1998, and fitted this prediction made in 1996. However, every mainstream journal had rejected my 8-page paper, although Electronics World (which I had written for before) made it available via the October 1996 issue.’Once this quantum gravity prediction was confirmed by Perlmutter’s results, instead of abandoning Friedmann’s solutions to GR and pursuing quantum gravity, the mainstream instead injected a small positive lambda (cosmological constant, driven by unobserved dark energy) into the Friedmann solution as an ad hoc modification.’I can’t understand why something which to me is perfectly sensible and is a prediction which was later confirmed experimentally, is simply ignored. Maybe it is just too simple, and people hate simplicity, preferring exotic dark energy, etc.

‘People are just locked into believing Friedmann’s solutions to GR are correct because they come from GR which is well validated in other ways. They simply don’t understand that the redshift of gravitons over cosmological sized distances would weaken gravity, and that GR simply doesn’t contains these quantum gravity dynamics, so fails. It is “groupthink”.’

As for LQG:

‘In loop quantum gravity, the basic idea is … to … think about the holonomy [whole rule] around loops in space. The idea is that in a curved space, for any path that starts out somewhere and comes back to the same point (a loop), one can imagine moving along the path while carrying a set of vectors, and always keeping the new vectors parallel to older ones as one moves along. When one gets back to where one started and compares the vectors one has been carrying with the ones at the starting point, they will in general be related by a rotational transformation. This rotational transformation is called the holonomy of the loop. It can be calculated for any loop, so the holonomy of a curved space is an assignment of rotations to all loops in the space.’ – P. Woit, Not Even Wrong, Cape, London, 2006, p189.

Surely this is compatible with Yang-Mills quantum field theory where the loop is due to the exchange of force causing gauge bosons from one mass to another and back again.

Over vast distances in the universe, this predicts that redshift of the gauge bosons weakens the gravitational coupling constant. Hence it predicts the need to modify general relativity in a specific way to incorporate quantum gravity: cosmic scale gravity effects are weakened. This indicates that gravity isn’t slowing the recession of matter at great distances, which is confirmed by observations.

For the empirically-verifiable prediction of the strength of gravity, see the mathematical proofs at http://feynman137.tripod.com/#h which have been developed and checked for ten years.  The result is consistent with the Hubble parameter and Hubble parameter-consistent-density estimates.  Putting in the Hubble parameter and density yields the universal gravitational constant within the error of the parameters.  Since further effort is being made in cosmology to refine the estimates of these things, we will get better estimates and make a more sensitive check on the predicted strength of gravity in consequence.  Another relationship the model implies is the dynamics of the strength of electromagnetism relative to that of gravity.

This utilises the lepton-quark capacitor model, with the gauge boson exchange radiation representing the electromagnetic field.  For underlying electromagnetic theory problems see this page: ‘Kirchoff circuital current law dQ/dt + dD/dt = 0 is correct so far as it is a mathematical model dealing with large numbers of electrons. The problems with it as that it assumes, by virtue of the differential dQ/dt, that charge is a continuous variable and is not composed of discontinuities (electrons). So it is false on that score, and is only a mathematical approximation which is useful when the number dQ/dt represents a large change in the number of electrons passing a given point in the circuit in a second. A second flaw with the equation is the second term dD/dt (displacement current) which is a mathematical artifact and doesn’t describe a real vacuum displacement current. Instead, the reality is a radiative field effect, not a displacement or vacuum current. There is no way the vacuum can be polarized to give an electric displacement current where the field strength is below 10^18 volts/metre. Hence, displacement current doesn’t exist. The term dD/dt represents a simple but involved mechanism whereby accelerating charges at the wavefront in each conductor exchange radio frequency energy but none of the energy escapes to the surroundings because each conductor’s emission is naturally an inversion of the signal from the other, so the superimposed signals cancel out as seen from a distance large in comparison to the distance of separation of the two conductors. (As I’ve explained and illustrated previously: [14]).’

The capacitor QFT model in detail:

http://countiblis.blogspot.com/2005/11/universe-doesnt-really-exist.html

… At every instant, assuming the electrons have real positions and the indeterminancy principle is explained by ignorance of its position which is always real but often unknown – instead of by metaphysics of the type Bohr and Heisenberg worshipped – so you have a vector sum of electric fields possible across the universe.

The fields are physically propagated by gauge boson exchange. The gauge bosons must travel between all charges, they can’t tell that an atom is “neutral” as a whole, they just travel between the charges.

Therefore even though the electric dipole created by the separation of the electron from the proton in a hydrogen atom at any instant is randomly orientated, the gauge bosons can also be considered to be doing a random walk between all the charges in the universe.

The random-walk vector sum for the charges of all the hydrogen atoms is the voltage for a single hydrogen atom (the real charges mass in the universe is something like 90% composed of hydrogen), multiplied by the square root of the number of atoms in the universe.

This allows for the angles of each atom being random. If you have a large row of charged capacitors randomly aligned in a series circuit, the average voltage resulting is obviously zero, because you have the same number of positive terminals facing one way as the other.

So there is a lot of inefficiency, but in a two or three dimensional set up, a drunk taking an equal number of steps in each direction does make progress. The taking 1 step per second, he goes an average net distance from the starting point of t^0.5 steps after t seconds.

For air molecules, the same occurs so instead of staying in the same average position after a lot of impacts, they do diffuse gradually away from their starting points.

Anyway, for the electric charges comprising the hydrogen and other atoms of the universe, each atom is a randomly aligned charged capacitor at any instant of time.

This means that the gauge boson radiation being exchanged between charges to give electromagnetic forces in Yang-Mills theory will have the drunkard’s walk effect, and you get a net electromagnetic field of the charge of a single atom multiplied by the square root of the total number in the universe.

Now, if gravity is to be unified with electromagnetism (also basically a long range, inverse square law force, unlike the short ranged nuclear forces), and if gravity due to a geometric shadowing effect (see my home page for the Yang-Mills LeSage quantum gravity mechanism with predictions), it will depend on only a straight line charge summation.

In an imaginary straight line across the universe (forget about gravity curving geodesics, since I’m talking about a non-physical line for the purpose of working out gravity mechanism, not a result from gravity), there will be on average almost as many capacitors (hydrogen atoms) with the electron-proton dipole facing one way as the other,

But not quite the same numbers!

You find that statistically, a straight line across the universe is 50% likely to have an odd number of atoms falling along it, and 50% likely to have an even number of atoms falling along it.

Clearly, if the number is even, then on average there is zero net voltage. But in all the 50% of cases where there is an ODD number of atoms falling along the line, you do have a net voltage. The situation in this case is that the average net voltage is 0.5 times the net voltage of a single atom. This causes gravity.

The exact weakness of gravity as compared to electromagnetism is now explained.

Gravity is due to 0.5 x the voltage of 1 hydrogen atom (a “charged capacitor”).

Electromagnetism is due to the random walk vector sum between all charges in the universe, which comes to the voltage of 1 hydrogen atom (a “charged capacitor”), multiplied by the square root of the number of atoms in the universe.

Thus, ratio of gravity strength to electromagnetism strength between an electron and a proton is equal to: 0.5V/(V.N^0.5) = 0.5/N^0.5.

V is the voltage of a hydrogen atom (charged capacitor in effect) and N is the number of atoms in the universe.

This ratio is equal to 10^-40 or so, which is the correct figure.

The theory predicts various things that are correct, and others that haven’t been checked yet.  So it is falsifiable experimentally and since the theory predicts that the black hole radius 2GM/c^2 and not the much bigger Planck scale is the correct size for lepton and quark gauge boson interaction cross-sections, it implies that gravity is trapping energy Poynting TEM wave currents (which are light speed Heaviside energy fields, not composed of slowly drifting charge, but composed of gauge boson type radiation) to create the particles, and thus permits a rigorous equivalence between rest mass energy and gravitational potential energy with respect to the rest of the universe.   Such an energy equivalence solves the galactic rotation curves anomaly and is consistent with ‘widely observed dark matter’ as John Hunter shows.  Hunter’s equivalence like Louise Riofrio’s equation needs a dimensionless correction factor of e^3 with e is the base of natural logarithms.  Dr Thomas Love of the Departments of Mathematics and Physics, California State University, shows that you can derive Kepler’s mathematical law from an energy equivalence (see previous post). 

Dr Love also deals with the ‘nothing is real’ claims of pseudo-scientific quantum popularisers who don’t understand mathematical physics.  One claim against causality and mechanism in quantum field theory is entanglement.  Quantum entanglement as an interpretation of the Bell inequality, as tested by Aspect et al., relies upon a belief in the “wavefunction collapse”.  The exact state of any particle is supposed to be indeterminate before being measured. When measured, the wave function “collapses” into a definite value.  Einstein objected to this, and often joked to believers of wave function collapse:

Do you believe that the moon exists when you aren’t looking?

EPR (Einstein, Polansky and Rosen) wrote a paper in Physical Review on the wavefunction collapse problem in 1935. (This led eventually to Aspect’s tangled experiment.)  Schroedinger was inspired by it to write the “cat paradox” paper a few months later.

PROBLEM WITH ENTANGLEMENT

Dr Thomas Love of the Departments of Physics and Mathematics, California State University, points out that the “wavefunction collapse” interpretation (and all entanglement interpretations) are speculative.  He points out that the wavefunction doesn’t physically collapse. There are two mathematical models, the time-dependent Schroedinger equation and the time-independent Schroedinger equation.

Taking a measurement means that, in effect, you switch between which equations you are using to model the electron. It is the switch over in mathematical models which creates the discontinuity in your knowledge, not any real metaphysical effect.  When you take a measurement on the electron’s spin state, for example, the electron is not in a superimposition of two spin states before the measurement. (You merely have to assume that each possibility is a valid probabilistic interpretation, before you take a measurement to check.)

Suppose someone flips a coin and sees which side is up when it lands, but doesn’t tell you. You have to assume that the coin is 50% likely heads up, and 50% likely to be tails up. So, to you, it is like the electron’s spin before you measure it. When the person shows you the coin, you see what state the coin is really in. This changes your knowledge from a superposition of two equally likely possibilities, to reality.

Dr Love states on page 9 of his paper Towards an Einsteinian Quantum Theory: “The problem is that quantum mechanics is mathematically inconsistent…”, and compares the two versions of the Schroedinger equation on page 10. The time independent and time-dependent versions disagree and this disagreement nullifies the principle of superposition and consequently the concept of wavefunction collapse being precipitated by the act of making a measurement. The failure of superposition discredits the usual interpretation of the EPR experiment as proving quantum entanglement. To be sure, making a measurement always interferes with the system being measured (by recoil from firing light photons or other probes at the object), but that is not justification for the metaphysical belief in wavefunction collapse.

P. 51: Love quotes a letter from Einstein to Schrodinger written in May 1928; ‘The Heisenberg-Bohr tranquilizing philosophy – or religion? – is so delicately contrived that, for the time being, it provides a gentle pillow for the true believer from which he cannot easily be aroused. So let him lie there.’

P. 52: ‘Bohr and his followers tried to cut off free enquiry and say that they had discovered ultimate truth – at that point their efforts stopped being science and became a revealed religion with Bohr as its prophet.’

P. 98: Quotation of Einstein’s summary of the problems with standard quantum theory: ‘I am, in fact, firmly convinced that the essential statistical character of contemporary quantum theory is solely to be ascribed to the fact that this theory operates with an incomplete description of physical systems.’ (Albert Einstein, ‘Reply to Criticisms’, in Albert Einstein: Philosopher-Scientist, edited by P. A. Schipp, Tutor Publishing, 1951.)

‘Einstein … rejected the theory not because he … was too conservative to adapt himself to new and unconventional modes of thought, but on the contrary, because the new theory was in his view too conservative to cope with the newly discovered empirical data.’ – Max Jammer, ‘Einstein and Quantum Physics’ in Albert Einstein: Historical and Cultural Perspectives, edited by Gerald Holton and Yedhuda Elkana, 1979.

P. 99: “It is interesting to note that when a philosopher of science attacked quantum field theory, the response was immediate and vicious. But when major figures from within physics, like Dirac and Schwinger spoke, the critics were silent.” Yes, and they were also polite to Einstein when he spoke, but called him an old fool behind his back. (The main problem is that even authority in science is pretty a impotent thing unless it is usefully constructive criticism.)

P. 100: ‘The minority who reject the theory, although led by the great names of Albert Einstein and Paul Dirac, do not yet have any workable alternative to put in its place.’ – Freeman Dyson, ‘Field Theory’, Scientific American, 199 (3), September 1958, pp78-82.

P. 106: ‘Once an empirical law is well established the tendency is to ignore or try to accommodate recalcitrant experiences, rather than give up the law. The history of science is replete with examples where apparently falsifying evidence was ignored, swept under the rug, or led to something other than the law being changed.’ – Nancy J. Nersessian, Faraday to Einstein: Constructing Meaning in Scientific Theories, Martinus Nijhoff Pub., 1984.

O’Hara quotation “Bandwagons have bad steering, poor brakes, and often no certificate of roadworthiness.” (M. J. O’Hara, Eos, Jan 22, 1985, p34.)

Schwartz quotation: ‘The result is a contrived intellectual structure, more an assembly of successful explanatory tricks and gadgets that its most ardent supporters call miraculous than a coherently expressed understanding of experience. … Achievement at the highest levels of science is not possible without a deep relationship to nature that can permit human unconscious processes – the intuition of the artist – to begin to operate … The lack of originality in particle physics … is a reflection of the structural organization of the discipline where an exceptionally sharp division of labor has produced a self-involved elite too isolated from experience and criticism to succeed in producing anything new.’ [L. Schwartz, The Creative Moment, HarperCollins, 1992.]

P. 107: ‘The primary difference between scientific thinking and religious thinking is immediacy. The religious mind wants an answer now. The scientific mind has the ability to wait. To the scientific mins the answer “We don’t know yet” is perfectly acceptable. The physicists of the 1920s and later accepted many ideas without sufficient data or thought but with all the faith and fervor characteristic of a religion.’

Love is author of papers like ‘The Geometry of Grand Unification’, Int. J. Th. Phys., 1984, p801, ‘Complex Geometry, Gravity, and Unification, I., The Geometry of Elementary Particles’, Int. J. Th. Phys., 32, 1993, pp.63-88 and ‘II., The Generations Problem’, Int. J. Th. Phys., 32, 1993, pp. 89-107. He presented his first paper before an audience which included Dirac (although unfortunately Dirac was then old and slept right through).  He has a vast literature survey and collection of vitally informative quotations from authorities, as well as new insights from his own work in quantum mechanics and field theory.

It is a pity that string theorists block him and others like Tony Smith (also here), Danny Ross Lunsford (see here for his brilliant but censored paper which was deleted from arXiv and is now only on the widely ignored CERN Document Server, and see here for his suppression by stringers), and others who also have more serious ideas than string, like many of the others commenters on Not Even Wrong.

More on the technical details of waves in space: 

Gauge bosons for electromagnetism are supposed to have 4 polarizations, not the 2 of real photons.  However you can get 4 polarizations by an exchange system where two opposite-flowing energy currents are continuously being exchanged between each pair of charges: the Poynting-Heaviside electromagnetic energy current is illustrated at the top of: http://www.ivorcatt.com/1_3.htm

Unfortunately the orthogonal vectors the author of that page uses don’t clearly show the magnetic field looping around each conductor in opposite directions.  However, his point that electricity only goes at light speed seems to imply that static charge goes at light speed, presumably with this speed being the spin of fermions.

This ties in with the radiation from a rotating (spinning) electron.  You don’t get oscillating Maxwellian radiation thrown off from the circular acceleration of the spin of the charge, because there is no real oscillation to begin with, just rotation.  So you should get continuous, non-oscillating radiation.  The difference between this and oscillating photons is in a way the same as the difference between D.C. and A.C. electricity transmission mechanisms.

For D.C. electricity transmission, you always need two conductors, even if you are just sending a logic signal into a long unterminated transission line, and you know the logic signal will bounce back off the far end at return to you at light speed.  But for alternating signals, you only need a single wire because the time-varying signal helps it propagate.

The key physics is self inductance.  A single wire has infinite self inductance, ie, the magnetic field generated by energy flowing in a single wire opposes that flow of energy.  With two wires, the magnetic field each wire produces partly cancels that of the other, making the total inductance less than infinite.

See http://www.ivorcatt.com/6_2.htm for the calculations proving that the inductance per unit length is infinite for a one-way energy current, but not so if there is also an energy current going in the opposite direction:

The self inductance of a long straight conductor is infinite.  This is a recurrence of Kirchhoff’s First Law, that electric current cannot be sent from A to B. It can only be sent from A to B and back to A”

Similarly, if you stop thinking about the transverse light wave, and think instead about a longitudinal sound wave, you see that the oscillation in the sound wave means that you have two opposing forces in the sound wave.  An outward force, and an inward force.  The inward force is the underpressure phase, while the outward force is the overpressure phase.  I started thinking about the balance of forces due to explosion physics: http://glasstone.blogspot.com/2006/03/outward-pressure-times-area-is-outward.html

Whenever you have a sound, the outward overpressure times the spherical area gives the total outward force.  This force must by Newton’s 3rd law have an inward reaction.  The inward reaction is the underpressure phase, which has equal duration but reversed direction due to being below ambient pressure.

You can’t get a sound wave to propagate just by releasing pressure, or the air will disperse locally without setting up a 1100 feet/second propagating longitudinal wave.

To get a sound wave, you need first to create overpressure, and then you need to create underpressure so that there is a reaction to the overpressure, which allows it to propagate in the longitudinal wave mode.  Transverse waves are similar, except that the field variation is perpendicular to the direction of propagation.  The Transverse Electromagnetic (TEM) wave is illustrated with nice simulations here: http://www.ee.surrey.ac.uk/Teaching/Courses/EFT/transmission/html/TEMWave.html 

There is a serious conflict between Maxwell’s conception of the electromagnetic wave, and quantum field theory, and Maxwell is the loser.  Maxwell’s radio wave requires that in typical 1-10 volts/metre electromagnetic waves in space there is a displacement current due to free charges moving, but the infra-red cutoff in quantum field theory implies that electric field strengths of at least 10^18 volts/metre are required to allow the creation of polarizable charges by pair production in the vacuum, and thus displacement current.  Hence although Maxwell’s mathematical model of electromagnetism has a real world correspondence, it is not exactly what he thought it to mean.

DISCLAIMER: just because string theory is not even wrong, you should not automatically believe alternatives.  Any new ideas in this post must not be instantly accepted as objective truth by everyone!  Please don’t assume them to be correct just because they look so inviting and beautiful…