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1 Introduction

The Standard Model of particle physics has been wildly successful at explaining physical phe-

nomenon for the past fifty years. Over that time the theory has been filled in with various particles

and more accurate measurements of their interactions and masses, but the fundamental structure

has endured. Perhaps the most perplexing mystery within the Standard Model is why fermions,

described by Dirac spinors, exist in three generations—each generation having identical charges

with respect to the fundamental forces but different masses and mixings with respect to the Higgs

field. This tri-fold symmetry of fermion generations strongly indicates there is a finite symmetry,

triality, that acts in conjunction with the charge, parity, and time reversal symmetries of Dirac

spinors in the Standard Model. In this work, we introduce this symmetry in the context of C, P,

and T, and work out the group theoretical implications.

Dirac spinors are a foundational part of the Standard Model. They are not, however, an

irreducible representation space of the spacetime spin group, Spin(1, 3). Rather, Dirac spinors

are an irreducible representation space of the spacetime pin group, Pin(1, 3), a double cover of

the spacetime orthogonal group, O(1, 3), and a subgroup of the spacetime Clifford group Cl∗(1, 3)

(consisting of invertible Clifford algebra elements).[1] The identity component of the spacetime spin

group is the spacetime orthochronous spin group, Spin+(1, 3) (the group of rotations obtained by

exponentiating Cl(1, 3) bivectors), equivalent to SL(2,C), and the double cover of SO+(1, 3).

The spacetime orthochronous spin group extends to the spacetime pin group by adding spatial

reflections, called parity conjugations (P ), and temporal reflections, called time conjugations (T ).

To summarize, we have:

Spin+(1, 3)⊗ {1, P, T, PT} = Spin(1, 3)⊗ {1, T} = Pin(1, 3) ⊂ Cl∗(1, 3) ⊂ Cl(1, 3)

Because the weak interaction maximally violates P-symmetry (interacting with only left-chiral

parts of fermions), many modern authors choose to disregard foundational P-symmetry, building

theories up from Weyl spinors in an irreducible representation space of SL(2,C) = Spin+(1, 3).

However, it is very likely that all fermions consist of both left and right-chiral parts that are related

by a P-symmetry that is broken but should still be considered foundational.

Pin(1, 3) group elements, U , act as Cl(1, 3) Clifford algebra elements on Dirac spinors, in

conjunction with corresponding active Lorentz transformations, Ψ(x) → UΨ(x′), and via the

Clifford adjoint on Clifford vectors and other Clifford algebra elements, A(x) → UA(x′)U−. The

Spin+(1, 3) subgroup elements of Pin(1, 3) consist of combinations of spatial rotations and Lorentz

boosts,

Uθ = e−
1
2γγ0n1θ = cos θ

2 − γγ0n1 sin
θ
2 Uζ = e−

1
2γ0n2ζ = cosh ζ

2 − γ0n2 sinh
ζ
2

which combine to make scalar plus bivector plus pseudoscalar (γ = γ0γ1γ2γ3) elements, U ∈
Spin+(1, 3). Alternatively, Clifford rotation elements can be constructed from successive Clifford

reflections. Using the pseudoscalar, the reflection of any Clifford element, A ∈ Cl(1, 3), or spinor,

Ψ, through a vector, u, can also be written as a Clifford adjoint,

A′ = RuA = (uγ)A(uγ)− = (uγ)A(u−γ) Ψ′ = RuΨ = (uγ)Ψ
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Arbitrary Clifford reflections, as elements of Pin(1, 3), can be constructed by combining spacetime

rotations with a reflection through the unit time Clifford basis vector, UT = γ0γ = γ1γ2γ3, called

“time conjugation” (T ), or reflection through the three unit space Clifford basis vectors, UP =

−γ1γγ2γγ3γ = γ0, called “parity conjugation” (P )—with the negative sign by convention—or their

combination, UPT = γ. These P and T symmetry conjugations anticommute, PT = −TP , and
close to form the PT Group (of order 8), a finite subgroup of Pin(1, 3). For Pin(1, 3) these satisfy

{U2
P = 1, U2

T = 1, U2
PT = −1}, while for Pin(3, 1) we have {U ′2

P = −1, U ′2
T = −1, U ′2

PT = −1},
so these two pin groups are not isomorphic. Also note that Spin(1, 3) = Spin+(1, 3) ⊗ {1, PT}.
Since we like working with Spin+(1, 3) because of the isomorphism to SL(2,C), but we would also

like our spinors to change sign under P 2, corresponding to a 2π rotation, as they do in Pin(3, 1),

we can fudge a bit by defining U ′
P = iγ0, providing the best of both worlds. Physically, we appear

to live in a world with underlying Pin(3, 1) symmetry, but it’s easier to work with Pin(1, 3) for

calculations.

The spacetime pin group, Pin(1, 3), is in Cl(1, 3), and can be extended to the Dirac algebra via

an antiunitary charge conjugation (C) operator, UC = iγ2K (in whichK is the complex conjugation

operator), acting on complex Dirac spinors—transforming between particles and antiparticles.

When we look at quantized fermion fields, T-symmetry becomes more complicated due to the

positive energy constraint. A different unitary time conjugation operator, UQ
T = γ13, is associated

with T-symmetry (T ). And this is carried back to the unquantized arena by defining yet a different,

antiunitary time conjugation operator on Dirac spinors, U ′
T = −iUTUC = γ13K, which we also

associate with T-symmetry (T ), and we subsequently label the previous unitary T-symmetry, with

UT = γ0γ, as TU . Under their complex conjugations and Clifford multiplications, {UC , U
′
P , U

′
T }

generate the CPT Group (of order 16).[2] The projective action of the CPT Group on quantized

or unquantized Dirac spinors can be graphically depicted, using weights, as action on a cube.

Since the CPT Group is the split-biquaternion group, it is natural to re-identify Dirac spinors as

biquaternions, with corresponding C, P , and T actions on them.

In physics, P-symmetry is violated by the weak interaction, and CP-symmetry is violated by

the Yukawa interaction with the Higgs field, but CPT-symmetry holds, with CPT ∼ PTU here, so

Spin(1, 3) = Spin+(1, 3)⊗ {1, PTU} is an unbroken symmetry of nature. In the Standard Model,

Dirac spinors are found in triplets, corresponding to three generations of each kind of fermion,

each combining with the others according to a mixing matrix to produce mass states. Given this

three-fold symmetry, it is natural to introduce a discrete triality symmetry (t) that cycles between

generations of Dirac spinors. The main result of this paper is that there is a unique way to

nontrivially extend the CPT Group by triality to the CPTt Group (of order 96) while preserving

CPT-symmetry. This CPTt Group acts projectively on a 24-cell of Dirac spinor triplets.
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2 Gravitational Weights of a Massless Quantum Dirac Spinor

Massless fermions are quantized excitations of Weyl spinors, which are the left or right-chiral halves

of Dirac spinors, corresponding to spinor representation spaces of the spacetime Lorentz algebra,

so(1, 3), described via the Cl(1, 3) Clifford algebra. Using Pauli matrices, the Weyl representation

of Dirac matrices (the Cl(1, 3) Clifford basis vectors) are:

γ0 = σ1 ⊗ σ0 γπ = −iσ2 ⊗ σπ

These representative matrices multiply to give six Clifford bivector basis generators of so(1, 3),

Jπ = 1
4ϵπρσγρσ = − i

2σ0 ⊗ σπ Kπ = 1
2γ0π = 1

2σ3 ⊗ σπ

corresponding to spatial rotations and spacetime boosts. Identifying the antisymmetric Clifford or

matrix product of these with the Lie bracket, the nonzero brackets of the Lorentz algebra are:

[Jπ, Jρ] = ϵπρσJσ [Jπ,Kρ] = ϵπρσKσ [Kπ,Kρ] = −ϵπρσJσ

This Lie algebra structure of so(1, 3) is further elucidated by identifying basis elements of a Cartan

subalgebra, {J3,K3}, and computing the eigenvalues, j3 and k3, with imaginary and real root

coordinates, jI3 and kR3 , and corresponding root vectors, resulting in a Cartan-Weyl basis for the

Lie algebra, {J3,K3, E
∨/∧
L , E

∨/∧
R }, with nonzero brackets,[

J3, E
∨/∧
L

]
= (±i)E∨/∧

L

[
K3, E

∨/∧
L

]
= (∓1)E

∨/∧
L E

∨/∧
L = 1

2 (∓J1 + iJ2 ± iK1 +K2)[
J3, E

∨/∧
R

]
= (±i)E∨/∧

R

[
K3, E

∨/∧
R

]
= (±1)E

∨/∧
R E

∨/∧
R = 1

2 (±J1 − iJ2 ± iK1 +K2)

[E∨
L , E

∧
L ] = −i J3 −K3 [E∨

R, E
∧
R] = −i J3 +K3

These are put in Chevalley-Serre form by defining non-orthogonal Cartan basis elements, HL/R =

−iJ3 ∓K3, resulting in the brackets,[
HL, E

∨/∧
L

]
= ±2iE

∨/∧
L

[
E∨

L , E
∧
L

]
= HL

[
HR, E

∨/∧
R

]
= ±2iE

∨/∧
R

[
E∨

R, E
∧
R

]
= HR

Alternatively, these complex root vectors can be transformed to a real Cartan-Weyl basis, with

resulting real structure constants,[
J3, E

R
±
]
= (+1)EI

±
[
K3, E

R
±
]
= (±1)ER

± ER
± = 1

2 (±J1 +K2)[
J3, E

I
±
]
= (−1)ER

±
[
K3, E

I
±
]
= (±1)EI

± EI
± = 1

2 (±J2 −K1)[
ER

+, E
I
−
]
=

[
ER

−, E
I
+

]
= −1

2J3
[
ER

+, E
R
−
]
=

[
EI

+, E
I
−
]
= 1

2K3

A spacetime Lorentz algebra element represented as a Clifford bivector, B = Bπ
s Jπ +B

π
t Kπ =

1
2B

µνγµν , acts on a spacetime vector, v = vµγµ, via anti-symmetric Clifford multiplication,

v′ = B × v = 1
2B

µνvρ (γµν × γρ) =
1
4B

µνvρ (γµηνρ − γνηµρ) =
1
2B

µνvνγµ

– 4 –



Using Cartan subalgebra basis elements, J3 =
1
2γ12 and K3 =

1
2γ03, the weights and weight vectors

of this spacetime vector representation space are:

J3 × v
∨/∧
S = (±i)v∨/∧S K3 × v

∨/∧
S = 0 v

∨/∧
S = γ1 ∓ iγ2

J3 × v
∨/∧
T = 0 K3 × v

∨/∧
T = (±1)v

∨/∧
T v

∨/∧
T = γ0 ∓ γ3

A spacetime Dirac spinor, ψ = ψaQa, is acted on by Clifford bivectors via their representative

matrices, ψ′ = B ψ = 1
2B

µν(γµν)
b
cψ

cQb. Using the action of the Cartan subalgebra elements,

J3 = − i
2σ0 ⊗ σ3 and K3 = 1

2σ3 ⊗ σ3, the weights and weight vectors of this spinor representation

space of the spacetime Lorentz algebra are:

J3 ψ
∨/∧
L = (±i/2)ψ

∨/∧
L K3 ψ

∨/∧
L = (∓1/2)ψ

∨/∧
L ψ∧

L = Q1 ψ∧
R = Q3

J3 ψ
∨/∧
R = (±i/2)ψ

∨/∧
R K3 ψ

∨/∧
R = (±1/2)ψ

∨/∧
R ψ∨

L = Q2 ψ∨
R = Q4

The roots of so(1, 3) correspond to gravitational spin connection states, ω
∧/∨
L/R, vector weights

correspond to gravitational frame states, e
∧/∨
S/T , and spinor weights correspond to massless fermion

states, f
∧/∨
L/R. Since the spin operator is Sz = iJ3, the corresponding spin quantum number is

ωS = sz = −jI3; and similarly for the boost quantum number we define ωR
T = −kR3 . (Real

weight components are labeled with R to distinguish them from more typical imaginary weight

components.)

so(1, 3) kR3 jI3 ωR
T ωS

ω
∧/∨
L ±1 ∓1 ∓1 ±1

ω
∧/∨
R ∓1 ∓1 ±1 ±1

e
∧/∨
S 0 ∓1 0 ±1

e
∧/∨
T ∓1 0 ±1 0

f
∧/∨
L ±1/2 ∓1/2 ∓1/2 ±1/2

f
∧/∨
R ∓1/2 ∓1/2 ±1/2 ±1/2

ωT

ωS

Table 1. Roots and weights of so(1, 3).

A Dirac spinor corresponds to a fermion or anti-fermion with specific momentum and spin.

Massive fermions can be treated as massless fermions interacting with a Higgs field. Massless

fermions have definite helicity, with aligned or anti-aligned spin and momentum. Solutions to the

massless Dirac equation, 0 = iγµ∂µΨ, are constructed from Pauli spinor helicity states, puχ± =

±χ±, corresponding to a momentum direction,

pu = pπuσπ = σ1 sin(θ) cos(ϕ) + σ2 sin(θ) sin(ϕ) + σ3 cos(θ)

Explicitly, the momentum direction representative matrix and helicity states are:

pu =

[
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

]
χ+ =

[
e−iϕ/2 cos θ

2

eiϕ/2 sin θ
2

]
χ− =

[
e−iϕ/2 sin θ

2

−eiϕ/2 cos θ
2

]
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which are normalized to satisfy χ†
aχb = δab and the identity χ±(−p) = ±iχ∓(p). Massless Dirac

solutions consist of positive or negative energy parts, with left or right helicity, for any specified

momentum,

Ψ+ = uL/Rp e−ipµxµ
Ψ− = vL/Rp e+ipµxµ

in which the spacetime four-momentum is:

pµ =
(
E,E p1u, E p

2
u, E p

3
u

)
and the positive or negative energy Dirac spinor helicity states are:

uLp =

[
χ−
0

]
uRp =

[
0

χ+

]
vLp =

[
ξ−
0

]
vRp =

[
0

ξ+

]

which satisfy hu
L/R
p = ∓1

2u
L/R
p and h v

L/R
p = ∓1

2v
L/R
p , with h = pπuSπ = 1

2 (σ0 ⊗ pu). The negative

energy Dirac spinor helicity eigenstates are defined to be the charge conjugates,

vLp = (uRp )
C = iγ2u

R ∗
p =

[
ϵχ∗

+

0

]
=

[
ξ−
0

]
vRp = (uLp )

C = iγ2u
L ∗
p =

[
0

−ϵχ∗
−

]
=

[
0

ξ+

]
(2.1)

with charge conjugate Weyl spinors defined as ξ± = ∓ϵχ∗
∓ = −χ±, in which ϵ = −iσ2 is the skew

matrix. As well as this charge conjugation identity, Dirac spinor helicity eigenstates also satisfy

identities related to parity,

iγ0 u
L/R
−p = ±uR/L

p iγ0 v
L/R
−p = ∓vR/L

p

and time reversal,

γ13 u
L/R
−p = −iuL/R ∗

p γ13 v
L/R
−p = +ivL/R ∗

p

Although we usually think of a massless Weyl spinor as determined by its momentum, it is

equally valid to consider a Weyl spinor state as primary, and use that to determine its momentum.

Via spectral decomposition, we have:

2χ∓χ
†
∓ = σ0 ∓ pu = p0L/R

in which we have determined the left or right null four-vector and momentum direction from a left

or right helicity state. If we generalize this to allow for arbitrary Weyl spinors,

2ψL/Rψ
†
L/R = pL/R = p0σ0 ∓ pπσπ = E (σ0 ∓ pπuσπ)

we obtain complex null four-momenta of the corresponding energy, satisfying 0 = det
(
pL/R

)
=

pµpνηµν . This relation leads to efficient spinor-helicity methods for computing scattering ampli-

tudes.
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Dirac basis spinors, ψ
∧/∨
L = Q1/2 and ψ

∧/∨
R = iQ3/4, correspond to a left handed fermion

traveling in the ∓ẑ direction or a right handed fermion traveling the ±ẑ direction. These basis

spinors correspond to four basis helicity states,

χ−(−ẑ) =

[
1

0

]
χ−(+ẑ) =

[
0

1

]
χ+(+ẑ) =

[
i

0

]
χ+(−ẑ) =

[
0

i

]

and the corresponding eight Dirac spinor helicity states, u
L/R
± and v

L/R
± .

A massless quantum Dirac spinor in Minkowski spacetime,

.̂Ψ =

∫
d3p

(2π)3(2E)

(
.̂a
L/R
p uL/Rp e−ipµxµ

+ .̂b
R/L †
p vL/Rp e+ipµxµ

)
and its adjoint,

.
ˆ̄Ψ = .̂Ψ

†
γ0 =

∫
d3p

(2π)3(2E)

(
.̂a
L/R †
p ūL/Rp e+ipµxµ

+ .̂b
R/L

p v̄L/Rp e−ipµxµ
)

include creation and annihilation operators for particles, .̂a
L/R
p , and antiparticles, .̂b

L/R

p , of left and

right chirality, for all possible momenta. If we consider only the basis states of momentum in the

positive, +, or negative, −, ẑ direction, the massless quantum Dirac spinor along z is:

.̂Ψz =


.̂a
L
−e

−iE(t+z) − .̂b
R †
− e+iE(t+z)

.̂a
L
+e

−iE(t−z) − .̂b
R †
+ e+iE(t−z)

i .̂a
R
+e

−iE(t−z) − i .̂b
L †
+ e+iE(t−z)

i .̂a
R
−e

−iE(t+z) − i .̂b
L †
− e+iE(t+z)


Similarly, the massless quantum Dirac spinor adjoint along z is:

.
ˆ̄Ψz =

[
−i .̂aR †

+ e+− + i .̂b
L

+e
−− −i .̂aR †

− e++ + i .̂b
L

−e
−+

.̂a
L †
− e++ − .̂b

R

−e
−+

.̂a
L †
+ e+− − .̂b

R

+e
−−

]
These are acted upon by the Lorentz algebra, so(1, 3), with Cartan subalgebra basis elements

chosen to be the (anti-Hermitian) spin, J3 = 1
2γ12 = − i

2σ0 ⊗ σ3 = −i Sz, and (Hermitian) boost,

K3 = 1
2γ03 = 1

2σ3 ⊗ σ3, bivectors of the Cl(1, 3) Clifford algebra. Typically, such as for the

anti-Hermitian rotation operator, O = J3, there is a corresponding anti-Hermitian operator on

the infinite-dimensional unitary representation space operators of quantum field theory, such as

Ô = Ĵ3, satisfying: [
Ô, .̂Ψ

]
= O .̂Ψ

[
Ĵ3, .̂Ψ

]
= J3 .̂Ψ (2.2)

and, for the adjoint, [
Ô†, .

ˆ̄Ψ
]
= − .

ˆ̄Ψ
(
γ0O

†γ0
) [

Ĵ3, .
ˆ̄Ψ
]
= − .

ˆ̄Ψ J3

For the Hermitian boost operator, K3, we take the corresponding operator, K̂3 on the infinite-

dimensional unitary representation space to be anti-Hermitian to preserve quantum unitarity, and

so we have: [
K̂3, .̂Ψ

]
= K3 .̂Ψ

[
K̂3, .

ˆ̄Ψ
]
= .

ˆ̄Ψ
(
γ0K

†
3γ

0
)
= − .

ˆ̄ΨK3
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These formulas allow us to find the spin and boost eigenvalues (weights), j3 and k3, of the fermion

annihilation and creation operators,[
Ĵ3, .̂a

L
∓

]
= (∓i/2) .̂a

L
∓

[
Ĵ3, .̂b

R †
∓

]
= (∓i/2) .̂b

R †
∓[

Ĵ3, .̂a
R
±

]
= (∓i/2) .̂a

R
±

[
Ĵ3, .̂b

L †
±

]
= (∓i/2) .̂b

L †
±[

K̂3, .̂a
L
∓

]
= (±1/2) .̂a

L
∓

[
K̂3, .̂b

R †
∓

]
= (±1/2) .̂b

R †
∓[

K̂3, .̂a
R
±

]
= (∓1/2) .̂a

R
±

[
K̂3, .̂b

L †
±

]
= (∓1/2) .̂b

L †
±[

Ĵ3, .̂a
R †
±

]
= (±i/2) .̂a

R †
±

[
Ĵ3, .̂b

L

±

]
= (±i/2) .̂b

L

±[
Ĵ3, .̂a

L †
∓

]
= (±i/2) .̂a

L †
∓

[
Ĵ3, .̂b

R

∓

]
= (±i/2) .̂b

R

∓[
K̂3, .̂a

R †
±

]
= (∓1/2) .̂a

R †
±

[
K̂3, .̂b

L

±

]
= (∓1/2) .̂b

L

±[
K̂3, .̂a

L †
∓

]
= (±1/2) .̂a

L †
∓

[
K̂3, .̂b

R

∓

]
= (±1/2) .̂b

R

∓

Summarizing this structure, the table of spin and boost quantum numbers, ωS = sz = −jI3 and

ωR
T = −kR3 , of the annihilation and creation operators of a massless quantum Dirac spinor—with

a relabeling for particle spin and helicity—is:

4s ωR
T ωS h q

a∧L .̂a
L
− −1/2 +1/2 −1/2 +1/2

a∨L .̂a
L
+ +1/2 −1/2 −1/2 +1/2

a∧R .̂a
R
+ +1/2 +1/2 +1/2 +1/2

a∨R .̂a
R
− −1/2 −1/2 +1/2 +1/2

ā∧L .̂b
L
− −1/2 +1/2 −1/2 −1/2

ā∨L .̂b
L
+ +1/2 −1/2 −1/2 −1/2

ā∧R .̂b
R
+ +1/2 +1/2 +1/2 −1/2

ā∨R .̂b
R
− −1/2 −1/2 +1/2 −1/2

4†s ωR
T ωS h q

a∧L
†

.̂a
L
−
† −1/2 −1/2 +1/2 −1/2

a∨L
†

.̂a
L
+
† +1/2 +1/2 +1/2 −1/2

a∧R
†

.̂a
R
+
† +1/2 −1/2 −1/2 −1/2

a∨R
†

.̂a
R
−
† −1/2 +1/2 −1/2 −1/2

ā∧L
†

.̂b
L
−
† −1/2 −1/2 +1/2 +1/2

ā∨L
†

.̂b
L
+
† +1/2 +1/2 +1/2 +1/2

ā∧R
†

.̂b
R
+
† +1/2 −1/2 −1/2 +1/2

ā∨R
†

.̂b
R
−
† −1/2 +1/2 −1/2 +1/2

Table 2. The weights of the annihilation and creation operators of a charged massless quantum Dirac

spinor, 4s, of so(1, 3) or so(3, 1).

The helicity quantum number is h = pzsz = 2ωR
T ωS , and the q = ±1/2 quantum number is

for whatever internal charge the particle has. Note that the helicity, spin, and charge, but not

boost, quantum numbers of a creation operator are opposite that of the corresponding annihilation

operator; and there is a weight match between annihilating particles and creating anti-particles,

such as ā∧†
L = a∨R. The spin and boost quantum numbers of the annihilation of a massless fermion

match those of a Dirac spinor (Table 1), as do those of the corresponding anti-fermion.
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3 Charge, Parity, Time, Triality, Biquaternionic Spinors, and the CPTt Group

The charge, parity, and time conjugates of Dirac solutions are also Dirac solutions, and correspond

to conjugations of a massless quantum Dirac spinor. The charge conjugate, ΨC = iγ2Ψ
∗, is:

.̂Ψ
C

=
∫ d3p

(2π)3(2E)

((
.̂a
L/R
p

)C
u
L/R
p e−ipµxµ

+
(

.̂b
R/L †
p

)C

v
L/R
p e+ipµxµ

)
= iγ2

∫ d3p
(2π)3(2E)

(
.̂a
L/R
p u

L/R
p e−ipµxµ

+ .̂b
R/L †
p v

L/R
p e+ipµxµ

)∗

=
∫ d3p

(2π)3(2E)

(
.̂a
L/R †
p v

R/L
p e+ipµxµ

+ .̂b
R/L

p u
R/L
p e−ipµxµ

)
using massless Dirac solution identities, iγ2u

L/R ∗
p = v

R/L
p and iγ2v

L/R ∗
p = u

R/L
p . The equivalent

charge conjugation transformations of the creation and annihilation operators, using the corre-

sponding operation on the infinite-dimensional representation, .̂Ψ
C
= Ĉ .̂ΨĈ

−, are thus:(
.̂a
L/R
p

)C
= .̂b

L/R

p

(
.̂b
R/L †
p

)C

= .̂a
R/L †
p (3.1)

The parity conjugate, ΨP = iγ0Ψ(t,−x), is

.̂Ψ
P

= iγ0
∫ d3p

(2π)3(2E)

(
.̂a
L/R
−p u

L/R
−p e−ipµxµ

+ .̂b
R/L †
−p v

L/R
−p e+ipµxµ

)
=

∫ d3p
(2π)3(2E)

(
± .̂a

L/R
−p u

R/L
p e−ipµxµ ∓ .̂b

R/L †
−p v

R/L
p e+ipµxµ

)
using iγ0 u

L/R
−p = ±uR/L

p and iγ0 v
L/R
−p = ∓vR/L

p . The equivalent parity conjugation transformations

of the creation and annihilation operators are thus:(
.̂a
L/R
p

)P
= ∓ .̂a

R/L
−p

(
.̂b
R/L †
p

)P

= ± .̂b
L/R †
−p (3.2)

The time conjugate, ΨT = γ13Ψ(−t, x), of a massless quantum Dirac spinor corresponds to an

antiunitary operator on Fock space,

.̂Ψ
T
= T̂ ′

.̂ΨT̂
′− =

∫ d3p
(2π)3(2E)

((
.̂a
L/R
p

)T
u
L/R ∗
p e+ipµxµ

+
(

.̂b
R/L †
p

)T

v
L/R ∗
p e−ipµxµ

)
= γ13

∫ d3p
(2π)3(2E)

(
.̂a
L/R
−p u

L/R
−p e+ipµxµ

+ .̂b
R/L †
−p v

L/R
−p e−ipµxµ

)
=

∫ d3p
(2π)3(2E)

(
−i .̂a

L/R
−p u

L/R ∗
p e+ipµxµ

+ i .̂b
R/L †
−p v

L/R ∗
p e−ipµxµ

)
using γ13 u

L/R
−p = −iuL/R ∗

p and γ13 v
L/R
−p = +iv

L/R ∗
p . The time conjugation transformations of the

creation and annihilation operators for particles and antiparticles is thus:(
.̂a
L/R
p

)T
= −i .̂a

L/R
−p

(
.̂b
R/L †
p

)T

= +i .̂b
R/L †
−p (3.3)

Applying time conjugation twice, we get:(
.̂a
L/R
p

)T 2

= +i
(

.̂a
L/R
−p

)T
= − .̂a

L/R
p

(
.̂b
R/L †
p

)T 2

= −i
(

.̂b
R/L †
−p

)T

= − .̂b
R/L †
p
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and so
(

.̂a
L/R
−p

)T
= +i .̂a

L/R
p and

(
.̂b
R/L †
−p

)T

= −i .̂b
R/L †
p , which isn’t entirely obvious. The exis-

tence of this antiunitary time conjugation operator, squaring to minus one, implies our fermion

representation space is quaternionic.[4]

Applied to the weight vectors of a massless quantum Dirac spinor, these conjugations give:

(a∧L)
C = ā∧L C : (ωR

T , ωS , h, q) 7→ ( ωR
T , ωS , h,−q)

(a∧L)
P = − a∧R P : (ωR

T , ωS , h, q) 7→ (−ωR
T , ωS ,−h, q)

(a∧L)
T = −i a∨L T : (ωR

T , ωS , h, q) 7→ (−ωR
T ,−ωS , h, q)

(3.4)

Plotting fermion weights, (ωS , h, q), and their conjugation relationships, we get the CPT cube:

C

P

C

P

C

P

C

P

CP

CP

T

TT

T

PT

PT

CPT

f∧R

f∨Rf∨L

f∧L

f̄∨R

f̄∧R

f̄∨L

f̄∧L

Composition of the C, P , and T operators produces the CPT Group, GCPT = Q8 × Z2, of order

16, equivalent to the split-biquaternion group. To understand this equivalence, we can identify

the charge conjugation operator, C ∼ I, with a split-complex number, I2 = 1, which commutes

with parity and time conjugation operators identified with unit quaternions, P ∼ e3, T ∼ e2, and

PT ∼ e3e2 = −e1. The resulting compositional multiplication table is:

1 C P T CP CT PT CPT

C +1 CP CT P T CPT PT

P CP −1 PT −C CPT −T −CT
T CT −PT −1 −CPT −C P CP

CP P −C CPT −1 PT −CT −T
CT T −CPT −C −PT −1 CP P

PT CPT T −P CT −CP −1 −C
CPT PT CT −CP T −P −C −1

Table 3. The CPT Group multiplication table—with further multiplications by −1 implied.

Because fermions exist in three generations, we can introduce a natural fourth discrete con-

jugation operator, triality (t), that maps between generations and satisfies t3 = 1. One non-

trivial extension of the CPT Group, GCPT = Q8 × Z2, to a group, GCPTt′ , acting on three
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generations of fermions, can be constructed by identifying a triality generator element, such as

t′ ∼ −1
2(1 + e1 + e2 + e3).[3] This choice of triality generator, t′, commutes with the split-complex

generator, C ∼ I, and cycles quaternion basis elements, such as t′e1t
′2 = e2. This triality generator

extends the PT group, GPT = Q8, to the binary-tetrahedral group, GPTt′ = 2T , and including

charge conjugation via the split-complex generator gives the CPTt’ Group, GCPTt′ = 2T × Z2,

the split-binary-tetrahedral group, of order 48. Although this is mathematically correct, this is

not the only choice of group extension by triality. The Standard Model is not invariant under

charge conjugation, C, so it is not expected that our t symmetry should commute with C. It is

the case that the Standard Model is invariant under CPT , so what we need is to have different C,

P , and T representatives that don’t commute with our t, such that the resulting CPT generator

does commute with t. Rather than guess at such new group representatives, we can revisit the

operation of C, P , and T on Dirac spinors, and translate these to operations on biquaternionic

spinors.

A Dirac spinor describes both a fermion and an anti-fermion, via positive and negative energy

Dirac solutions, (2.1). This suggests a re-arrangement of degrees of freedom, using the charge

conjugate,

Ψ =


Ψ1

Ψ2

Ψ3

Ψ4

 ΨC = iγ2Ψ
∗ =


−Ψ∗

4

Ψ∗
3

Ψ∗
2

−Ψ∗
1

 ΨQ =


Ψ1 −Ψ∗

4

Ψ2 Ψ∗
3

Ψ3 Ψ∗
2

Ψ4 −Ψ∗
1

 ∼

[
ψHL

ψHR

]

in which all Dirac spinor degrees of freedom can inhabit either the left or right-chiral Dirac bi-

quaternions, ψHL or ψHR. Here we make use of the representation of quaternions, eµ ∈ H, using

Pauli matrices, {e0 ∼ σ0, eπ ∼ −iσπ}, and the definition of biquaternions as quaternions with

complex coefficients, ψHL ∈ C⊗H.

ψHL = ψµ
HLeµ ∼ ψQL =

[
ΨR

1 + iΨI
1 −ΨR

4 + iΨI
4

ΨR
2 + iΨI

2 ΨR
3 − iΨI

3

]
=

[
ψL ψ̄L

]
ψQR = iσ2ψ

∗
QLσ1 ∼ ψHR = iψ∗

HLe3

ψHL = 1
2

(
ΨR

1 +ΨR
3 − iΨI

1 + iΨI
3

)
e0 +

1
2

(
ΨI

2 +ΨI
4 + iΨR

2 − iΨR
4

)
e1

+ 1
2

(
−ΨR

2 −ΨR
4 + iΨI

2 − iΨI
4

)
e2 +

1
2

(
ΨI

1 +ΨI
3 + iΨR

1 − iΨR
3

)
e3

Describing the biquaternions and their representation requires juggling several conjugations. Since

the Pauli matrices satisfy σ∗µ = σ2σ̄µσ2, we can define a similar conjugation for biquaternions,

ψ∗
QL ∼ −e2ψ∗

HLe2; and since the Pauli matrices are Hermitian, we also have ψ†
QL ∼ ψ̃∗

HL, using

complex and quaternionic conjugation, {ẽ0 = e0, ẽπ = −eπ}. The invariant bilinear form on the

biquaternions directly relates to the bilinear Dirac spinor scalar,

(ψHL, ψHL) =
(
ΨR

1Ψ
R
3 +ΨR

2Ψ
R
4 +ΨI

1Ψ
I
3 +ΨI

2Ψ
I
4

)
+ i

(
−ΨR

1Ψ
I
3 −ΨR

2Ψ
I
4 +ΨI

1Ψ
R
3 +ΨI

2Ψ
R
4

)
= ψ̃HLψHL = det(ψQL)

Ψ̄Ψ = 2
(
ΨR

1Ψ
R
3 +ΨR

2Ψ
R
4 +ΨI

1Ψ
I
3 +ΨI

2Ψ
I
4

)
= 2ℜ(ψ̃HLψHL)
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We can now calculate C, P , and T symmetry conjugations for biquaternionic fermions,

ΨC = iγ2Ψ
∗ ψC

QL = ψQLσ1 ψC
HL = iψHLe1 C ∼ ie1

ΨP = iγ0Ψ ψP
QL = −σ2ψ∗

QLσ1 ψP
HL = −ψ∗

HLe3 P ∼ −Ke3
ΨT = γ13Ψ

∗ ψT
QL = iσ2ψ

∗
QL ψT

HL = −ψ∗
HLe2 T ∼ −Ke2

(3.5)

in which we use the antiunitary time conjugation operator, U ′
T , and correctly reproduce the CPT

Group action on fermions, with quaternionic multiplication from the right. From these C, P , and

T generators we have CPT ∼ −i.
We can now add a triality generator, t ∼ −1

2(1 + e1 + e2 + e3), to those of our new C, P , and

T representatives and see that this does not commute with C and does commute with CPT . With

the addition of t, since we have PT ∼ e2e3 = e1, and t cycles quaternions, we can also construct

an expression for the complex conjugation generator in terms of other generators, K ∼ tPT ttT .

This K generator commutes with P , T , and t, but anti-commutes with C. It is antiunitary,

corresponding to complex conjugation of a Dirac spinor, ΨK = KΨ = Ψ∗, and corresponds to

creation conjugation on the infinite-dimensional representation space generators of QFT,

.̂Ψ
K

= K̂ .̂ΨK̂
− =

∫ d3p
(2π)3(2E)

((
.̂a
L/R
p

)K
u
L/R ∗
p e+ipµxµ

+
(

.̂b
R/L †
p

)K

v
L/R ∗
p e−ipµxµ

)
=

∫ d3p
(2π)3(2E)

(
.̂a
L/R
p u

L/R
p e−ipµxµ

+ .̂b
R/L †
p v

L/R
p e+ipµxµ

)∗

=
∫ d3p

(2π)3(2E)

(
.̂a
L/R †
p u

L/R ∗
p e+ipµxµ

+ .̂b
R/L

p v
L/R ∗
p e−ipµxµ

)
with (

.̂a
L/R
p

)K
= .̂a

L/R †
p

(
.̂b
L/R

p

)K

= .̂b
L/R †
p

Creation conjugation changes particle annihilation into particle creation, mapping positive energy

states to nonphysical negative energy states. This is not considered a symmetry of nature—but it

is part of our symmetry group.

The CPTt Group, GCPTt, a finite group of order 96, is generated by:

C ∼ ie1 P ∼ −Ke3 T ∼ −Ke2 t ∼ −1
2(1 + e1 + e2 + e3) (3.6)

It contains the eight unit quaternions, {±1,±e1,±e2,±e3}, comprising a quaternion subgroup,

Q8, and the unit complex numbers and conjugation operator, {±1,±i,±K,±iK}, comprising

a dihedral subgroup, D4, of order 8. It also contains the sixteen quaternionic Hurwitz integers,
1
2(±1±e1±e2±e3), which extendQ8 to the binary tetrahedral group, 2T , of order 24. The remaining

64 elements of GCPTt are compositions of these, with 2T and D4 both normal subgroups of GCPTt

combining non-trivially due to their shared −1. The PT subgroup, GPT = Q8, which extends by t

to GPTt = 2T , commutes withK, so there is a Z2 subgroup, comprised of {1,K}, such that 2T×Z2

is a subgroup of GCPTt. Consulting GAP, of 231 finite groups of order 96, only one monolithic

group has both a 2T × Z2 and D4 subgroup—this is the CPTt Group, GCPTt = (2T × Z2) ⋊ Z2

(GAP ID [96, 190]).[5]
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Just as the CPT Group acts on 8 quantized Dirac fermion states projectively represented as

the CPT cube in three dimensions, with vertices corresponding to fermion weights, (ωS , h, q), the

CPTt Group acts on three generations of fermion states projectively represented as a 24-cell, which

lives naturally in four dimensions. For the four weight coordinates of the 24-cell we can choose

(ωt, ωS , h, q), in which ωt = 4ωShq is a Euclidean boost weight, such that the eight weights of one

fermion correspond to the weights of an octonion under so(8). In these coordinates the projective

group action changes the signs of the first generation fermions, by matrices, CI , PI , and TI , and

the second and third generation particles have weights related to the first via multiplication times

a triality matrix, t. The resulting CPTt Group projective representation generators are:

CI =

−
+

+
−

 PI =

−
+

−
+

 TI =

−
−

+
+

 t = 1
2

+ − + +
+ − − −
+ + + −
+ + − +


The weights of the second and third generation particles are necessarily nonsensical under direct

interpretation, but are correct—matching those of the first generation—when considered under

triality. Similarly, the action of C, P , and T on the second (and similarly on the third) generation

particles are by the matrices CII = tCIt
2, PII = tPIt

2, and TII = tTIt
2. To better understand what

triality is and where this triality matrix comes from, we need to understand division algebras.[6]

Figure 1. The 24 elementary particle states of three generations of massless quantum Dirac fermion states

(such as electron, muon, and tau) represented as a 24-cell, acted on by the CPTt Group. The CPT cube of

the 8 first generation states is shown with red edges, the second generation CPT cube in green, and third

generation CPT cube in blue. The three generations are linked by triality, t, shown in black, with second

and third generation fermion states shown with smaller glyphs.
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4 Discussion

The fundamental symmetries of a massless quantum Dirac spinor are the charge (3.1), parity (3.2),

and time (3.3) conjugations of the corresponding creation and annihilation operators. Charge

conjugation swaps particles and anti-particles, parity conjugation reflects momentum and swaps

left and right helicities (preserving spin), and time conjugation reflects momentum and swaps spin

(preserving helicity). These conjugations correspond directly to operations on Dirac spinors or the

corresponding biquaternionic spinors, and to projective actions on their weights. Time conjugation

must be handled especially carefully, via a unitary UQ
T = γ13 on Dirac spinors or an antiunitary

U ′
T = γ13K operator that preserves the group structure. The finite group generated by these C,

P, and T conjugations is the CPT Group, GCPT = Q8 × Z2, equivalent to the split-biquaternion

group. This group acts projectively on the 8 weights of fermion states in the CPT cube.

Using an isomorphism to biquaternionic Dirac spinors, the C = ie1, P = −Ke3, and T = −Ke2
generators (3.5) of the CPT Group are extended by a quaternionic triality generator, t = 1

2(1 +

e1 + e2 + e3), commuting with the CPT generator, CPT = −i, to produce the monolithic CPTt

Group, GCPTt = (2T × Z2)⋊Z2, of order 96. This group acts projectively on the 24 weights (the

vertices of a 24-cell) corresponding to three generations of a fermion type and its corresponding

CPT cubes. It is important to note that the weights (spins and charges) of the second and third

generation fermions described this way are nonsensical when considered as weights of the Lorentz

algebra acting on the first generation—they only make sense as weights related to first-generation

weights by triality.

The identification of triality, t, as a partner to C, P , and T symmetries, and the extension

to the CPTt Group, seems likely to be of fundamental importance in the Standard Model and its

unification with gravity. Although it is possible to trivially extend the CPT Group to a composite

CPTt Group, such as extending the CPT Group by S4, such extension seems unlikely to present

the rich and varied generational mixing in the Standard Model, and we prefer a more unified

model, with a monolithic CPTt Group. In the complete Standard Model there are 8 fermion

types: neutrinos, electron-type leptons, three colors of up-type quarks, and three colors of down-

type quarks. In a unified theory (which includes right-handed neutrinos) these must correspond

to 8 disjoint 24-cells. The only current proposal for a unified theory that meets this criteria, with

a triality symmetry acting between 192 distinct fermion weights grouped into 8 disjoint 24-cells,

is E8 Theory.[7, 8]
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Figure 2. The 192 elementary particle states of three generations of massless quantum Dirac fermion

states, including 8 disjoint 24-cells, with each 24-cell corresponding to a different type of fundamental

fermion: neutrinos (gray), electron-type leptons (yellow), up-type quarks (red, green, and blue) and down-

type quarks (orange, chartreuse, and purple). Each 24-cell includes a triality-related triplet (connected by

gray lines, with second and third generation fermions shown with smaller glyphs) of 8 fermion states (cubes,

not shown) related by C, P, and T conjugations.
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