Peter Woit is writing a book, *Quantum Theory, Groups and Representations: An Introduction,* and has a PDF of the draft version linked here. He has now come up with the slogan “Quantum Theory is Representation Theory”, after postulating “What’s Hard to Understand is Classical Mechanics, Not Quantum Mechanics“.

I’ve recently become interested in the mathematics of QFT, so I’ll just make a suggestion for Dr Woit regarding his section “42.4 The propagator” which is incomplete (he has only the heading there on page 404 of the 11 August 2014 revision, with no test under it at all).

The Propagator is the greatest part of QFT from the perspective of Feynman’s 1985 book *QED: *you evaluate the propagator from either the Lagrangian or Hamiltonian, since the Propagator is simply the Fourier transform of the potential energy (the interaction part of the lagrangian provides the couplings for Feynman’s rules, not the propagator). Fourier transforms are simply Laplace transforms with a complex number in the exponent. The Laplace and Fourier transforms are used extensively in analogue electronics for transforming waveforms (amplitudes as a function of time) into frequency spectra (amplitudes as a function of frequency). Taking the concept at it’s simplest, the Laplace transform of a constant amplitude is just the reciprocal (inverse), e.g. an amplitude pulse lasting 0.1 second has a frequency of 1/0.1 = 10 Hertz. You can verify that from dimensional analysis. For integration between zero and infinity, with F(f) = 1 we have:

Laplace transform, F(t) = Integral [F(f) * exp(-ft)] df

= Integral [exp(-ft)] df

= 1/t.

If we change from F(f) = 1 to F(f) = f, we now get:

Frequency, F(t) = Integral [f * exp(-ft)] df = 1/(t squared).

The trick of the Laplace transform is the integration property of the exponential function by itself, i.e. it’s unique property of remaining unchanged by integration (because e is the base of natural logarithms), apart from multiplication by the constant (the factor which is not a function of factor you’re integrating over) in its power. The Fourier transform is the same as the Laplace transform, but with a factor of “i” included in the exponential power:

Fourier transform, F(t) = Integral [F(f) * exp(-ift)] df

In quantum field theory, instead of inversely linked frequency f and time t, you have inversely linked variables like momentum p and distance x. This comes from Heisenberg’s ubiquitous relationship, p*x = h-bar. Thus, p ~ 1/x. Suppose that the potential energy of a force field is given by V = 1/x. Note that field potential energy V is part of the Hamiltonian, and also part of the Lagrangian, when given a minus sign where appropriate. You want to convert V from position space, V = 1/x, into momentum space, i.e. to make V a function of momentum p. The Fourier transform of the potential energy over 3-d space shows that V ~ 1/p squared. (Since this blog isn’t very suitable for lengthy mathematics, I’ll write up a detailed discussion of this in a vixra paper soon to accompany the one on renormalization and mass.)

**Fig. 1.**Although we have an upper case Lambda symbol included for an upper limit (or high energy, i.e. UV cutoff) on the integral which includes an electron mass term, we have not included a lower integration limit (IR cutoff): this is in keeping with the shoddy mathematics of most (all?) quantum field theory textbooks, which either deliberately or maliciously cover-up the key (and really interesting or enlightening) problems in the physics by obfuscating or by getting bogged down in mathematical trivia, like a clutter of technical symbolism. What we’re suggesting is that there is a big problem with the concept that the running coupling merely increases the “bare core” mass of a particle: this standard procedure conflates and confuses the high energy bare core mass that

*isn’t*seen at low energy, with the standard value of electron mass which

*is*what you observe at low energy.

*ather than informative tool designed solely and exclusively to speed up the flow of information that is helpful to those people focused merely upon making advances in the basic science.*But that’s nothing new. [When Mendel’s genetics were finally published after decades of censorship, his ideas had been (allegedly) plagiarized by two other sets of bigwig researchers whose papers the journal editors had more from gain by publishing, than they had to gain from publishing the original research of someone then obscure and dead! Neat logic, don’t you agree? Note that is statement of fact is not “bitterness”, it is just fact. A lot of the bitterness that does arise in science comes not from the hypocrisy of journals and groupthink, but because these are censored out from discussion. (Similarly the Oscars are designed to bring the attention to the Oscars, since the prize recipients are already famous anyway. There is no way to escape the fact that the media in any subject, be it science or politics, deems one celebrity more worthy of publicity than the diabolical murder of millions by left wing dictators. The reason is simply that the more “interesting” news sells more journals than the more difficult to understand problems.)]

(1) The Fourier transform of the Coulomb potential (or the Fourier transform of the potential energy term in the Lagrangian or Hamiltonian) gives rest mass.

(2) Please note in particular the observation that since the Coulomb (low energy, below IR cutoff) potential’s Fourier transform gives a propagator omitting a mass term, this propagator does not contribute a logarithmic running coupling. This lack of a running coupling at low energy is observed in classical physics for energy below about 1 Mev where no vacuum polarization or pair production occurs because pair production requires at least the mass of the electron and positron pair, 1.02 MeV. The Coulomb non-mass term propagator contribution at one-loop to electron mass is then non-logarithmic and simply equal to a factor like alpha times the integral (between 0 and A) of (1/k3)d4k = alpha * A. As shown in the diagram we identify this “contribution” from the Coulomb low energy propagator without a mass term to be the actual ground state mass of the electron, with the cutoff A corresponding to the neutral currents that mire down the electron charge core, causing mass, i.e. A is the mass of the uncharged Z boson of the electroweak scale (91 GeV). If you have two one loop diagrams, this integral becomes alpha * A squared.

(3) The one loop corrections shown on page 3 to electron mass for the non-Coulomb potentials (i.e. including mass terms in the propagator integrals) can be found in many textbooks, for example equations 1.2 and 1.3 on page 8 of “Supersymmetry Demystified”. As stated in the blog post, I’m writing a further paper about propagator derivations and their importance.

If you read Feynman’s 1985 QED (not his 1965 book with Hibbs, which misleads most people about path integrals and is preferred to the 1985 book by Zee and Distler), the propagator is the brains of QFT. You can’t directly do a path integral over spacetime with a lagrangian integrated to give action S and then re-integrated in the path integral, the integral of amplitude exp(iS) taken over all possible geometric paths, where S is the lagrangian integral. So, as Feynman argues, you have to construct a perturbative expansion, each term becoming more complex and representing pictorially the physical interactions between particles. Feynman’s point in his 1985 book is that this process essentially turns QFT simple. The contribution from each diagram involves multiplying the charge by a propagator for an internal line and ensuring that momentum is conserved at verticles.

I watched the video from the World Science Festival. Could I ask Peter, or the commenters, what would be wrong with the following response to Steinhardt’s complaint that whatever the BICEP2 results had been, they could be made to fit with some variant of inflationary theory: yes, the observation of B-mode polarisation (let’s assume it’s not an artifact of foreground dust–this will be shown one way or the other soon in any case) cannot by itself prove inflation. But it lets us choose appropriate candidate theories from within the previous set of inflationary theories, and, more importantly for inflation-backers, it adds another item to the list of things requiring explanation for any competing theory. So now we have not only isotropy, flatness, absence of relics, and large-scale structure to explain, but we also have otherwise unexplained B-mode polarisation of the CMB. An appropriately narrowed inflation model can account for all of those things at once; that makes it correspondingly harder for an alternative theory to be equally successful. Doesn’t that make it a stronger theory than it was this time last year?

My response: No if it’s an epicycle theory which “explains” stuff by using censorship of alternatives: “that makes it correspondingly harder for an alternative theory to be equally successful.” The success of epicycles was that it gave vacuous ammunition to those who wanted for subjective reasons to ignore Aristarchus’s unpopular, unfashionable, apparently more complex system of earth rotating and orbiting the sun. There were various spurious (false law-based, rather than direct evidence-based) no-go theorems against Aristarchus’s solar system, but the alleged simplicity and elegance of epicycles won over in the minds of charlatans (“let’s simply have every thing orbit earth, adding epicycles to make it work! How beautiful! The landscape of possible models is big enough to be non-falsifiable, yipee! Great science!”). Of course, inflation is different since it’s seeking to close down the scientific search for better alternatives before they’re even emerged into public view…